toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Diamanti, R.; Giusarma, E.; Mena, O.; Archidiacono, M.; Melchiorri, A. url  doi
openurl 
  Title Dark radiation and interacting scenarios Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue (up) 6 Pages 063509 - 8pp  
  Keywords  
  Abstract An extra dark radiation component can be present in the universe in the form of sterile neutrinos, axions or other very light degrees of freedom which may interact with the dark matter sector. We derive here the cosmological constraints on the dark radiation abundance, on its effective velocity and on its viscosity parameter from current data in dark radiation-dark matter coupled models. The cosmological bounds on the number of extra dark radiation species do not change significantly when considering interacting schemes. We also find that the constraints on the dark radiation effective velocity are degraded by an order of magnitude while the errors on the viscosity parameter are a factor of two larger when considering interacting scenarios. If future Cosmic Microwave Background data are analyzed assuming a noninteracting model but the dark radiation and the dark matter sectors interact in nature, the reconstructed values for the effective velocity and for the viscosity parameter will be shifted from their standard 1/3 expectation, namely c(eff)(2) = 0.34(-0.003)(+0.006) and c(vis)(2) = 0.29(-0.001)(+0.002) at 95% C.L. for the future COrE mission data.  
  Address [Diamanti, Roberta] Univ Roma Tre, Dept Phys, I-00146 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315739200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1349  
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. url  doi
openurl 
  Title Nonminimal dark sector physics and cosmological tensions Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue (up) 6 Pages 063502 - 20pp  
  Keywords  
  Abstract We explore whether nonstandard dark sector physics might be required to solve the existing cosmological tensions. The properties we consider in combination are (a) an interaction between the dark matter and dark energy components and (b) a dark energy equation of state w different from that of the canonical cosmological constant w = -1. In principle, these two parameters are independent. In practice, to avoid early-time, superhorizon instabilities, their allowed parameter spaces are correlated. Moreover, a clear degeneracy exists between these two parameters in the case of cosmic microwave background (CMB) data. We analyze three classes of extended interacting dark energy models in light of the 2019 Planck CMB results and Cepheid-calibrated local distance ladder H-0 measurements of Riess et al. (R19), as well as recent baryon acoustic oscillation (BAO) and type Ia supernovae (SNeIa) distance data. We find that in quintessence coupled dark energy models, where w > -1, the evidence for a nonzero coupling between the two dark sectors can surpass the 5 sigma significance. Moreover, for both Planck + BAO or Planck + SNeIa, we find a preference for w > -1 at about three standard deviations. Quintessence models are, therefore, in excellent agreement with current data when an interaction is considered. On the other hand, in phantom coupled dark energy models, there is no such preference for a nonzero dark sector coupling. All the models we consider significantly raise the value of the Hubble constant, easing the H-0 tension. In the interacting scenario, the disagreement between Planck thorn BAO and R19 is considerably reduced from 4.3 sigma in the case of the Lambda cold dark matter (Lambda CDM) model to about 2.5 sigma. The addition of low-redshift BAO and SNeIa measurements leaves, therefore, some residual tension with R19 but at a level that could be justified by a statistical fluctuation. Bayesian evidence considerations mildly disfavor both the coupled quintessence and phantom models, while mildly favoring a coupled vacuum scenario, even when late-time datasets are considered. We conclude that nonminimal dark energy cosmologies, such as coupled quintessence, phantom, or vacuum models, are still an interesting route toward softening existing cosmological tensions, even when low-redshift datasets and Bayesian evidence considerations are taken into account.  
  Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000517964500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4309  
Permanent link to this record
 

 
Author Giusarma, E.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Sterile neutrino models and nonminimal cosmologies Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue (up) 8 Pages 083522 - 9pp  
  Keywords  
  Abstract Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant w not equal -1 dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, (3 + 2) massive neutrino models with similar to 0.5 eV sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with null results from other searches. Big bang nucleosynthesis bounds could compromise the viability of (3 + 2) models if the two sterile species are fully thermalized states at decoupling.  
  Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303118100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 984  
Permanent link to this record
 

 
Author Di Valentino, E.; Giusarma, E.; Mena, O.; Melchiorri, A.; Silk, J. url  doi
openurl 
  Title Cosmological limits on neutrino unknowns versus low redshift priors Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue (up) 8 Pages 083527 - 11pp  
  Keywords  
  Abstract Recent cosmic microwave background (CMB) temperature and polarization anisotropy measurements from the Planck mission have significantly improved previous constraints on the neutrino masses as well as the bounds on extended models with massless or massive sterile neutrino states. However, due to parameter degeneracies, additional low redshift priors are mandatory in order to sharpen the CMB neutrino bounds. We explore here the role of different priors on low redshift quantities, such as the Hubble constant, the cluster mass bias, and the reionization optical depth tau. Concerning current priors on the Hubble constant and the cluster mass bias, the bounds on the neutrino parameters may differ appreciably depending on the choices adopted in the analyses. With regard to future improvements in the priors on the reionization optical depth, a value of tau = 0.05 +/- 0.01, motivated by astrophysical estimates of the reionization redshift, would lead to Sigma m(nu) < 0.0926 eV at 90% C.L., when combining the full Planck measurements, baryon acoustic oscillation, and Planck clusters data, thereby opening the window to unravel the neutrino mass hierarchy with existing cosmological probes.  
  Address [Di Valentino, Eleonora; Silk, Joseph] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375203600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2643  
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. url  doi
openurl 
  Title Cosmological bound on the QCD axion mass, redux Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue (up) 9 Pages 022 - 35pp  
  Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology  
  Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.  
  Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863296000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5383  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva