|   | 
Details
   web
Records
Author Barrientos, E.; Lobo, F.S.N.; Mendoza, S.; Olmo, G.J.; Rubiera-Garcia, D.
Title Metric-affine f(R,T) theories of gravity and their applications Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue (up) 10 Pages 104041 - 10pp
Keywords
Abstract We study f (R, T) theories of gravity, where T is the trace of the energy-momentum tensor T-mu v, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine f(R) relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the nonconservation of the energy-momentum tensor, which implies nongeodesic motion arid consequently leads to the appearance of an extra force. The weak field limit leads to a modified Poisson equation formally identical to that found in Eddington-inspired Born-Infeld gravity. Furthermore, the coupling of these gravity theories to perfect fluids, electromagnetic, and scalar fields, and their potential applications arc discussed.
Address [Barrientos, E.; Mendoza, S.] Univ Nacl Autonoma Mexico, Inst Astron, AP 70-264, Ciudad De Mexico 04510, Mexico, Email: ebarrientos@astro.unam.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000433036500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3585
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title Mapping nonlinear gravity into General Relativity with nonlinear electrodynamics Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue (up) 10 Pages 866 - 11pp
Keywords
Abstract We show that families of nonlinear gravity theories formulated in a metric-affine approach and coupled to a nonlinear theory of electrodynamics can be mapped into general relativity (GR) coupled to another nonlinear theory of electrodynamics. This allows to generate solutions of the former from those of the latter using purely algebraic transformations. This correspondence is explicitly illustrated with the Eddington-inspired Born-Infeld theory of gravity, for which we consider a family of nonlinear electrodynamics and show that, under the map, preserve their algebraic structure. For the particular case of Maxwell electrodynamics coupled to Born-Infeld gravity we find, via this correspondence, a Born-Infeld-type nonlinear electrodynamics on the GR side. Solving the spherically symmetric electrovacuum case for the latter, we show how the map provides directly the right solutions for the former. This procedure opens a new door to explore astrophysical and cosmological scenarios in nonlinear gravity theories by exploiting the full power of the analytical and numerical methods developed within the framework of GR.
Address [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000448428400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3776
Permanent link to this record
 

 
Author Delhom, A.; Lobo, I.P.; Olmo, G.J.; Romero, C.
Title A generalized Weyl structure with arbitrary non-metricity Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue (up) 10 Pages 878 - 9pp
Keywords
Abstract A Weyl structure is usually defined by an equivalence class of pairs (g, omega) related by Weyl transformations, which preserve the relation del g = omega circle times g, where g and omega denote the metric tensor and a 1-form field. An equivalent way of defining such a structure is as an equivalence class of conformally related metrics with a unique affine connection Gamma((omega)), which is invariant under Weyl transformations. In a standard Weyl structure, this unique connection is assumed to be torsion-free and have vectorial non-metricity. This second view allows us to present two different generalizations of standard Weyl structures. The first one relies on conformal symmetry while allowing for a general non-metricity tensor, and the other comes from extending the symmetry to arbitrary (disformal) transformations of the metric.
Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: adria.delhom@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000491497000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4185
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.; Rustam, A.
Title Structure and stability of traversable thin-shell wormholes in Palatini f(R) gravity Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue (up) 10 Pages 104012 - 11pp
Keywords
Abstract We study the structure and stability of traversable wormholes built as (spherically symmetric) thin shells in the context of Palatini f(R) gravity. Using a suitable junction formalism for these theories we find that the effective number of degrees of freedom on the shell is reduced to a single one, which fixes the equation of state to be that of massless stress-energy fields, contrary to the general relativistic and metric f(R) cases. Another major difference is that the surface energy density threading the thin shell, needed in order to sustain the wormhole, can take any sign and may even vanish, depending on the desired features of the corresponding solutions. We illustrate our results by constructing thin-shell wormholes by surgically grafting Schwarzschild space-times and show that these configurations are always linearly unstable. However, surgically joined Reissner-Nordstrom space-times allow for linearly stable, traversable thin-shell wormholes supported by a positive energy density provided that the (squared) mass-to-charge ratio, given by y = Q(2)/M-2, satisfies the constraint 1 < y < 9/8 (corresponding to overcharged Reissner-Nordstrom configurations having a photon sphere) and lies in a region bounded by specific curves defined in terms of the (dimensionless) radius of the shell x(0) = R/M.
Address [Lobo, Francisco S. N.] Univ Lisbon, Fac Ciencias, Inst Astrofis & Ciencias Espaco, Edificio C8,Campo Grande, P-1749016 Lisbon, Portugal, Email: fslobo@fc.ul.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000587286200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4596
Permanent link to this record
 

 
Author Olmo, G.J.; Orazi, E.; Pradisi, G.
Title Conformal metric-affine gravities Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue (up) 10 Pages 057 - 21pp
Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity
Abstract We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symmetry of a large class of geometric gravity theories, introducing a compensator dilaton field that naturally gives rise to a Stuckelberg sector where a spontaneous breaking mechanism of the conformal symmetry is at work to generate a mass scale for the gauge field. For Ricci-based gravities that include, among others, General Relativity, f(R) and f(R, R μnu R μnu) theories and the EiBI model, we prove that the on-shell gauge vector associated to the scaling symmetry can be identified with the torsion vector, thus recovering and generalizing conformal invariant theories in the Riemann-Cartan formalism, already present in the literature.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000878259300018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5405
Permanent link to this record