toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Folgado, M.G.; Gomez-Vargas, G.A.; Rius, N.; Ruiz de Austri, R. url  doi
openurl 
  Title Probing the sterile neutrino portal to Dark Matter with gamma rays Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue (up) 8 Pages 002 - 20pp  
  Keywords dark matter theory; particle physics – cosmology connection; neutrino theory  
  Abstract Sterile neutrinos could provide a link between the Standard Model particles and a dark sector, besides generating active neutrino masses via the seesaw mechanism type I. We show that, if dark matter annihilation into sterile neutrinos determines its observed relic abundance, it is possible to explain the Galactic Center gamma-ray excess reported by the Fermi-LAT Collaboration as due to an astrophysical component plus dark matter annihilations. We observe that sterile neutrino portal to dark matter provides an impressively good fit, with a p-value of 0.78 in the best fit point, to the Galactic Center gamma-ray flux, for DM masses in the range (40-80) GeV and sterile neutrino masses 20 GeV less than or similar to M-N < M-DM. Such values are compatible with the limits from Fermi-LAT observations of the dwarfs spheroidal galaxies in the Milky Way halo, which rule out dark matter masses below similar to 50 GeV ( 90 GeV), for sterile neutrino masses M-N less than or similar to MDM ( M-N << M-DM). We also estimate the impact of AMS-02 anti-proton data on this scenario.  
  Address [Folgado, Miguel G.; Rius, Nuria; Ruiz de Austri, Roberto] Univ Valencia, CSIC, Dept Fis Teor, C-Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: migarfol@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000440591500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3681  
Permanent link to this record
 

 
Author Bernigaud, J.; Blanke, M.; de Medeiros Varzielas, I.; Talbert, J.; Zurita, J. url  doi
openurl 
  Title LHC signatures of tau-flavoured vector leptoquarks Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue (up) 8 Pages 127 - 31pp  
  Keywords New Light Particles; Specific BSM Phenomenology; Flavour Symmetries; Theories of Flavour  
  Abstract We consider the phenomenological signatures of Simplified Models of Flavourful Leptoquarks, whose Beyond-the-Standard Model (SM) couplings to fermion generations occur via textures that are well motivated from a broad class of ultraviolet flavour models (which we briefly review). We place particular emphasis on the study of the vector leptoquark Delta(mu) with assignments (3, 1, 2/3) under the SM's gauge symmetry, SU(3)(C) x SU(2)(L) x U(1)(Y), which has the tantalising possibility of explaining both R-K(*) and R-D(*) anomalies. Upon performing global likelihood scans of the leptoquark's coupling parameter space, focusing in particular on models with tree-level couplings to a single charged lepton species, we then provide confidence intervals and benchmark points preferred by low(er)-energy flavour data. Finally, we use these constraints to further evaluate the (promising) Large Hadron Collider (LHC) detection prospects of pairs of tau-flavoured Delta(mu), through their distinct (a)symmetric decay channels. Namely, we consider direct third-generation leptoquark and jets plus missing-energy searches at the LHC, which we find to be complementary. Depending on the simplified model under consideration, the direct searches constrain the Delta(mu), mass up to 1500-1770 GeV when the branching fraction of Delta(mu), is entirely to third-generation quarks (but are significantly reduced with decreased branching ratios to the third generation), whereas the missing-energy searches constrain the mass up to 1150-1700 GeV while being largely insensitive to the third-generation branching fraction.  
  Address [Bernigaud, Jordan; Blanke, Monika] Karlsruhe Inst Technol, Inst Astroparticle Phys IAP, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany, Email: jordan.bernigaud@kit.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000840379400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5329  
Permanent link to this record
 

 
Author Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A.; Titov, A. url  doi
openurl 
  Title Sterile neutrino portals to Majorana dark matter: effective operators and UV completions Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue (up) 8 Pages 085 - 36pp  
  Keywords Models for Dark Matter; Particle Nature of Dark Matter; Sterile or Heavy Neutrinos; Baryon/Lepton Number Violation  
  Abstract Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively.  
  Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000836782300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5340  
Permanent link to this record
 

 
Author Garcia-Barcelo, J.M.; Melcon, A.A.; Diaz-Morcillo, A.; Gimeno, B.; Lozano-Guerrero, A.J.; Monzi-Cabrera, J.; Navarro-Madrid, J.R.; Navarro, P. url  doi
openurl 
  Title Methods and restrictions to increase the volume of resonant rectangular-section haloscopes for detecting dark matter axions Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue (up) 8 Pages 098 - 37pp  
  Keywords Axions and ALPs; Particle Nature of Dark Matter  
  Abstract Haloscopes are resonant cavities that serve as detectors of dark matter axions when they are immersed in a strong static magnetic field. In order to increase the volume and improve space compatibility with dipole or solenoid magnets for axion searches, various haloscope design techniques for rectangular geometries are discussed in this study. The volume limits of two types of haloscopes are explored: those based on single cavities and those based on multicavities. In both cases, possibilities for increasing the volume of long and/or tall structures are presented. For multicavities, 1D geometries are explored to optimise the space in the magnets. Also, 2D and 3D geometries are introduced as a first step in laying the foundations for the development of these kinds of topologies. The results prove the usefulness of the developed methods, evidencing the ample room for improvement in rectangular haloscope designs nowadays. A factor of three orders of magnitude improvement in volume compared with a single cavity based on the WR-90 standard waveguide is obtained with the design of a long and tall single cavity. Similar procedures have been applied for long and tall multicavities. Experimental measurements are shown for prototypes based on tall multicavities and 2D structures, demonstrating the feasibility of using these types of geometries to increase the volume of real haloscopes.  
  Address [Garcia-Barcelo, J. M.; Melcon, A. Alvarez; Diaz-Morcillo, A.; Lozano-Guerrero, A. J.; Monzo-Cabrera, J.; Navarro-Madrid, J. R.; Navarro, P.] Univ Politecn Cartagena, Dept Tecnol Informac & Comun, Pl Hosp 1, Cartagena 30302, Spain, Email: josemaria.garcia@upct.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001050076700002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5611  
Permanent link to this record
 

 
Author Portillo-Sanchez, D.; Escribano, P.; Vicente, A. url  doi
openurl 
  Title Ultraviolet extensions of the Scotogenic model Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue (up) 8 Pages 023 - 35pp  
  Keywords Baryon; Lepton Number Violation; Specific BSM Phenomenology; New Light Particles; Particle Nature of Dark Matter  
  Abstract The Scotogenic model is a popular scenario that induces radiative Majorana neutrino masses and includes a weakly-interacting dark matter candidate. We classify all possible ultraviolet extensions of the Scotogenic model in which (i) the dark DOUBLE-STRUCK CAPITAL Z(2) parity emerges at low energies after the spontaneous breaking of a global U(1)(L) lepton number symmetry, and (ii) the low-energy effective theory contains a naturally small lepton number breaking parameter, suppressed by the mass of a heavy mediator integrated out at tree-level. We find 50 such models and discuss two of them in detail to illustrate our setup. We also discuss some general aspects of the phenomenology of the models in our classification, exploring possible lepton flavor violating signals, collider signatures and implications for dark matter. The phenomenological prospects of these scenarios are very rich due to the presence of additional scalar states, including a massless Goldstone boson.  
  Address [Portillo-Sanchez, Diego] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Ave Inst Politecn Nacl 2508, Mexico City E-07360, Mexico, Email: pablo.escribano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001044764300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5614  
Permanent link to this record
 

 
Author NEXT Collaboration (Byrnes, N.K. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A. url  doi
openurl 
  Title NEXT-CRAB-0: a high pressure gaseous xenon time projection chamber with a direct VUV camera based readout Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue (up) 8 Pages P08006 - 33pp  
  Keywords Double-beta decay detectors; Optical detector readout concepts; Particle tracking detectors (Gaseous detectors); Time projection chambers  
  Abstract The search for neutrinoless double beta decay (0νββ) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0νββ searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton-and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium. Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0νββ.  
  Address [Byrnes, N. K.; Parmaksiz, I; Asaadi, J.; Baeza-Rubio, J.; Jones, B. J. P.; Mistry, K.; Moya, I. A.; Nygren, D. R.; Stogsdill, K.; Navarro, K. E.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001084390900004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5764  
Permanent link to this record
 

 
Author CMS and CALICE Collaborations (Acar, B. et al); Irles, A. url  doi
openurl 
  Title Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue (up) 8 Pages P08014 - 32pp  
  Keywords Calorimeters; Large detector systems for particle and astroparticle physics; Radiation-hard detectors; Si microstrip and pad detectors  
  Abstract The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly read out by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.  
  Address [Caraway, B.; Dittmann, J.; Hatakeyama, K.; Kanuganti, A. R.; Wilson, J. S.] Baylor Univ, Waco, TX 76706 USA, Email: Seema.Sharma@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001085057700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5784  
Permanent link to this record
 

 
Author Ghoshal, A.; Gouttenoire, Y.; Heurtier, L.; Simakachorn, P. url  doi
openurl 
  Title Primordial black hole archaeology with gravitational waves from cosmic strings Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue (up) 8 Pages 196 - 43pp  
  Keywords Cosmology of Theories BSM; Early Universe Particle Physics; Phase Transitions in the Early Universe; Specific BSM Phenomenology  
  Abstract Light primordial black holes (PBHs) with masses smaller than 10(9) g (10(-24) M-circle dot) evaporate before the onset of Big-Bang nucleosynthesis, rendering their detection rather challenging. If efficiently produced, they may have dominated the universe energy density. We study how such an early matter-dominated era can be probed successfully using gravitational waves (GW) emitted by local and global cosmic strings. While previous studies showed that a matter era generates a single-step suppression of the GW spectrum, we instead find a double-step suppression for local-string GW whose spectral shape provides information on the duration of the matter era. The presence of the two steps in the GW spectrum originates from GW being produced through two events separated in time: loop formation and loop decay, taking place either before or after the matter era. The second step – called the knee – is a novel feature which is universal to any early matter-dominated era and is not only specific to PBHs. Detecting GWs from cosmic strings with LISA, ET, or BBO would set constraints on PBHs with masses between 10(6) and 10(9) g for local strings with tension G μ= 10(-11), and PBHs masses between 10(4) and 10(9) g for global strings with symmetry-breaking scale eta = 10(15) GeV. Effects from the spin of PBHs are discussed.  
  Address [Ghoshal, Anish] Univ Warsaw, Inst Theoret Phys, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland, Email: anish.ghoshal@fuw.edu.pl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001188227600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5994  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Observation of Z production in proton-lead collisions at LHCb Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue (up) 9 Pages 030 - 18pp  
  Keywords Electroweak interaction; Heavy Ions; Heavy-ion collision; Particle and resonance production; Forward physics  
  Abstract The first observation of Z boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of root(s) N N = 5TeV is presented. The data sample corresponds to an integrated luminosity of 1.6 nb(-1) collected with the LHCb detector. The Z candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above 20 GeV/c. The invariant dimuon mass is restricted to the range 60-120 GeV/c. The Z production cross-section is measured to be sigma(Z ->mu+mu-) (fwd) = 13.5(-4.0)(+5.4)(stat.) +/- 1.2(syst.) nb in the direction of the proton beam and sigma(Z ->mu+mu-) (bwd) = 10.7(-5.1)(+8.4)(stat.) +/- 1.0(syst.) nb in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.  
  Address [Bediaga, I.; De Miranda, J. M.; Rodrigues, F. Ferreira; Gomes, A.; Hicheur, A.; Massafferri, A.; Nasteva, I.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341836000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1925  
Permanent link to this record
 

 
Author Torres-Espallardo, I.; Diblen, F.; Rohling, H.; Solevi, P.; Gillam, J.; Watts, D.; Espana, S.; Vandenberghe, S.; Fiedler, F.; Rafecas, M. doi  openurl
  Title Evaluation of resistive-plate-chamber-based TOF-PET applied to in-beam particle therapy monitoring Type Journal Article
  Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 60 Issue (up) 9 Pages N187-N208  
  Keywords PET; in-beam; RPC; particle therapy; TOF; range deviation; partial-ring  
  Abstract Particle therapy is a highly conformal radiotherapy technique which reduces the dose deposited to the surrounding normal tissues. In order to fully exploit its advantages, treatment monitoring is necessary to minimize uncertainties related to the dose delivery. Up to now, the only clinically feasible technique for the monitoring of therapeutic irradiation with particle beams is Positron Emission Tomography (PET). In this work we have compared a Resistive Plate Chamber (RPC)-based PET scanner with a scintillation-crystal-based PET scanner for this application. In general, the main advantages of the RPC-PET system are its excellent timing resolution, low cost, and the possibility of building large area systems. We simulated a partial-ring scannerbeam monitoring, which has an intrinsically low positron yield compared to diagnostic PET. In addition, for in-beam PET there is a further data loss due to the partial ring configuration. In order to improve the performance of the RPC-based scanner, an improved version of the RPC detector (modifying the thickness of the gas and glass layers), providing a larger sensitivity, has been simulated and compared with an axially extended version of the crystal-based device. The improved version of the RPC shows better performance than the prototype, but the extended version of the crystal-based PET outperforms all other options. based on an RPC prototype under construction within the Fondazione per Adroterapia Oncologica (TERA). For comparison with the crystal-based PET scanner we have chosen the geometry of a commercially available PET scanner, the Philips Gemini TF. The coincidence time resolution used in the simulations takes into account the current achievable values as well as expected improvements of both technologies. Several scenarios (including patient data) have been simulated to evaluate the performance of different scanners. Initial results have shown that the low sensitivity of the RPC hampers its application to hadron  
  Address [Torres-Espallardo, I.; Solevi, P.; Gillam, J.; Rafecas, M.] UV, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: irene.torres@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000354104700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2227  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva