toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P. url  doi
openurl 
  Title Search for a Dark Photon in e(+)e(-) Collisions at BABAR Type Journal Article
  Year 2014 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 113 Issue (down) 20 Pages 201801 - 8pp  
  Keywords  
  Abstract Dark sectors charged under a new Abelian interaction have recently received much attention in the context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A'), connecting the dark sector to the standard model. We present a search for a dark photon in the reaction e(+)e(-) ->gamma A', A' -> e(+)e(-), mu(+) mu(-) using 514 fb(-1) of data collected with the BABAR detector. We observe no statistically significant deviations from the standard model predictions, and we set 90% confidence level upper limits on the mixing strength between the photon and dark photon at the level of 10(-4) – 10(-3) for dark photon masses in the range 0.02-10.2 GeV. We further constrain the range of the parameter space favored by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment of the muon.  
  Address [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, IN2P3, CNRS, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344919200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2004  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title A search for neutrino emission from the Fermi bubbles with the ANTARES telescope Type Journal Article
  Year 2014 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 74 Issue (down) 2 Pages 2701 - 7pp  
  Keywords  
  Abstract Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source.  
  Address [Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Gandia 46730, Spain, Email: vladimir.kulikovskiy@ge.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000330956600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1699  
Permanent link to this record
 

 
Author Granero, D.; Perez-Calatayud, J.; Vijande, J.; Ballester, F.; Rivard, M.J. doi  openurl
  Title Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations Type Journal Article
  Year 2014 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 41 Issue (down) 2 Pages 021703 - 8pp  
  Keywords HDR; brachytherapy; skin; Monte Carlo; Geant4; Co-60; Ir-192; Yb-169  
  Abstract Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm x 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR Co-60 and Ir-192 sources and a hypothetical Yb-169 source were considered. The Geant4Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm x 5 cm Ir-192 superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about -3%. When the source was positioned at the skin surface, dose differences were smaller than -1% for Co-60 and Ir-192, yet -3% for Yb-169. For the interstitial implant, dose differences at the skin surface were -7% for Co-60, -0.6% for Ir-192, and -2.5% for Yb-169. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either Co-60 and Ir-192. For lower energy radionuclides like Yb-169, bolus may be needed; and (iii) for the interstitial case, at least a 0.1 cm bolus is advised for Co-60 to avoid underdosing superficial target layers. For Ir-192 and Yb-169, no bolus is needed. For those cases where no bolus is needed, its use might be detrimental as the lack of radiation scatter may be beneficial to the patient, although the 2% tolerance for dose calculation accuracy recommended in the AAPM TG-56 report is not fulfilled.  
  Address [Granero, Domingo] Hosp Gen Univ, ERESA, Dept Radiat Phys, Valencia 46014, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000331213300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1704  
Permanent link to this record
 

 
Author n_TOF Collaboration (Lederer, C. et al.); Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title Ni-62(n,gamma) and Ni-63(n,gamma) cross sections measured at the n_TOF facility at CERN Type Journal Article
  Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 89 Issue (down) 2 Pages 025810 - 11pp  
  Keywords  
  Abstract The cross section of the Ni-62(n,gamma) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility nTOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT = 30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni-63(n,gamma) reaction was measured for the first time at nTOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.  
  Address [Lederer, C.; Wallner, A.; Pavlik, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria, Email: claudia.lederer@ph.ed.uk  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332175500012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1717  
Permanent link to this record
 

 
Author Campanario, F.; Czyz, H.; Gluza, J.; Gunia, M.; Riemann, T.; Rodrigo, G.; Yundin, V. url  doi
openurl 
  Title Complete QED NLO contributions to the reaction e(+)e(-) -> mu(+)mu(-)gamma and their implementation in the event generator PHOKHARA Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue (down) 2 Pages 114 - 27pp  
  Keywords B-Physics; Standard Model  
  Abstract KLOE and Babar have an observed discrepancy of 2% to 5% in the invariant pion pair production cross section. These measurements are based on approximate NLO mu(+)mu(-)gamma cross section predictions of the Monte Carlo event generator PHOKHARA7.0. In this article, the complete NLO radiative corrections to mu(+)mu(-)gamma production are calculated and implemented in the Monte Carlo event generator PHOKHARA9.0. Numerical reliability is guaranteed by two independent approaches to the real and the virtual corrections. The novel features include the contribution of pentagon diagrams in the virtual corrections, which form a gauge-invariant set when combined with their box diagram partners. They may contribute to certain distributions at the percent level. Also the real emission was complemented with two-photon final state emission contributions not included in the generator PHOKHARA7.0. We demonstrate that the numerical influence reaches, for realistic charge-averaged experimental setups, not more than 0.1% at KLOE and 0.3% at BaBar energies. As a result, we exclude the approximations in earlier versions of PHOKHARA as origin of the observed experimental discrepancy.  
  Address [Campanario, F.; Rodrigo, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46980, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332506600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1725  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva