toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A. url  doi
openurl 
  Title Geodesic completeness in a wormhole spacetime with horizons Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue (down) 4 Pages 044047 - 16pp  
  Keywords  
  Abstract The geometry of a spacetime containing a wormhole generated by a spherically symmetric electric field is investigated in detail. These solutions arise in high-energy extensions of general relativity formulated within the Palatini approach and coupled to Maxwell electrodynamics. Even though curvature divergences generically arise at the wormhole throat, we find that these spacetimes are geodesically complete. This provides an explicit example where curvature divergences do not imply spacetime singularities.  
  Address [Olmo, Gonzalo J.; Sanchez-Puente, A.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000360065000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2359  
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A. url  doi
openurl 
  Title Classical resolution of black hole singularities in arbitrary dimension Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue (down) 4 Pages 044018 - 15pp  
  Keywords  
  Abstract A metric-affine approach is employed to study higher-dimensional modified gravity theories involving different powers and contractions of the Ricci tensor. It is shown that the field equations are always second-order, as opposed to the standard metric approach, where this is only achieved for Lagrangians of the Lovelock type. We point out that this property might have relevant implications for the AdS/CFT correspondence in black hole scenarios. We illustrate these aspects by considering the case of Born-Infeld gravity in d dimensions, where we work out exact solutions for electrovacuum configurations. Our results put forward that black hole singularities in arbitrary dimensions can be cured in a purely classical geometric scenario governed by second-order field equations.  
  Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000359443800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2362  
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Geodesically complete BTZ-type solutions of 2+1 Born-Infeld gravity Type Journal Article
  Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 34 Issue (down) 4 Pages 045006 - 21pp  
  Keywords Born-Infeld gravity; BTZ; wormholes; nonsingular solutions; geodesic completeness  
  Abstract We study Born-Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.  
  Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000395398800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3013  
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title Correspondence between modified gravity and general relativity with scalar fields Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue (down) 4 Pages 044040 - 15pp  
  Keywords  
  Abstract We describe a novel procedure to map the field equations of nonlinear Ricci-based metric-affine theories of gravity, coupled to scalar matter described by a given Lagrangian, into the field equations of general relativity coupled to a different scalar field Lagrangian. Our analysis considers examples with a single and N real scalar fields, described either by canonical Lagrangians or by generalized functions of the kinetic and potential terms. In particular, we consider several explicit examples involving foRthorn theories and the Eddington-inspired Born-Infeld gravity model, coupled to different scalar field Lagrangians. We show how the nonlinearities of the gravitational sector of these theories can be traded to nonlinearities in the matter fields and how the procedure allows to find new solutions on both sides of the correspondence. The potential of this procedure for applications of scalar field models in astrophysical and cosmological scenarios is highlighted.  
  Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.cdu.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459210600012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3914  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. url  doi
openurl 
  Title Minimum main sequence mass in quadratic Palatini f(R) gravity Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue (down) 4 Pages 044020 - 9pp  
  Keywords  
  Abstract General relativity yields an analytical prediction of a minimum required mass of roughly similar to 0.08-0.09 M-circle dot for a star to stably burn sufficient hydrogen to fully compensate photospheric losses and, therefore, to belong to the main sequence. Those objects below this threshold ( brown dwarfs) eventually cool down without any chance to stabilize their internal temperature. In this work we consider quadratic Palatini f(R) gravity and show that the corresponding Newtonian hydrostatic equilibrium equation contains a new term whose effect is to introduce a weakening/strengthening of the gravitational interaction inside astrophysical bodies. This fact modifies the general relativity prediction for this minimum main sequence mass. Through a crude analytical modeling we use this result in order to constraint a combination of the quadratic f(R) gravity parameter and the central density according to astrophysical observations.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000480390800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4108  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva