toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.; Sarikas, S. url  doi
openurl 
  Title Updated BBN bounds on the cosmological lepton asymmetry for non-zero theta(13) Type Journal Article
  Year 2012 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 708 Issue (up) 1-2 Pages 1-5  
  Keywords Neutrinos; Physics of the early Universe; Primordial asymmetries  
  Abstract We discuss the bounds on the cosmological lepton number from Big Bang Nucleosynthesis (BBN), in light of recent evidences for a large value of the neutrino mixing angle theta(13), sin(2) theta(13) greater than or similar to 0.01 at 2 sigma. The largest asymmetries for electron and mu, tau neutrinos compatible with He-4 and H-2 primordial yields are computed versus the neutrino mass hierarchy and mixing angles. The flavour oscillation dynamics is traced till the beginning of BBN and neutrino distributions after decoupling are numerically computed. The latter contains in general, non-thermal distortion due to the onset of flavour oscillations driven by solar squared mass difference in the temperature range where neutrino scatterings become inefficient to enforce thermodynamical equilibrium. Depending on the value of theta(13), this translates into a larger value for the effective number of neutrinos, N-eff. Upper bounds on this parameter are discussed for both neutrino mass hierarchies. Values for N-eff which are large enough to be detectable by the Planck experiment are found only for the (presently disfavoured) range sin(2) theta(13) <= 0.01.  
  Address [Pastor, Sergio] Univ Valencia, CSIC, Inst Fis Corpuscular, Ed Inst Invest, E-46071 Valencia, Spain, Email: pastor@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301310000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 967  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue (up) 11 Pages 022  
  Keywords  
  Abstract We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60 degrees, detected at the Pierre Auger Observatory. the geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the similar to 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298141300022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 865  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal  
  Volume 84 Issue (up) 12 Pages 122005  
  Keywords  
  Abstract The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E(-2) differential energy spectrum the limit on the single-flavor neutrino is E(2)dN/dE < 1.74 x 10(-7)GeVcm(-2)s(-1)sr(-1) at 90% C.L. in the energy range 1 x 10(17) eV < E < 1 x 10(20)eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298667100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 863  
Permanent link to this record
 

 
Author Franca, U.; Lineros, R.A.; Palacio, J.; Pastor, S. url  doi
openurl 
  Title Probing interactions within the dark matter sector via extra radiation contributions Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue (up) 12 Pages 123521 - 6pp  
  Keywords  
  Abstract The nature of dark matter is one of the most thrilling riddles for both cosmology and particle physics nowadays. While in the typical models the dark sector is composed only by weakly interacting massive particles, an arguably more natural scenario would include a whole set of gauge interactions which are invisible for the standard model but that are in contact with the dark matter. We present a method to constrain the number of massless gauge bosons and other relativistic particles that might be present in the dark sector using current and future cosmic microwave background data, and provide upper bounds on the size of the dark sector. We use the fact that the dark matter abundance depends on the strength of the interactions with both sectors, which allows one to relate the freeze-out temperature of the dark matter with the temperature of this cosmic background of dark gauge bosons. This relation can then be used to calculate how sizable is the impact of the relativistic dark sector in the number of degrees of freedom of the early Universe, providing an interesting and testable connection between cosmological data and direct/indirect detection experiments. The recent Planck data, in combination with other cosmic microwave background experiments and baryonic acoustic oscillations data, constrains the number of relativistic dark gauge bosons, when the freeze-out temperature of the dark matter is larger than the top mass, to be N less than or similar to 14 for the simplest scenarios, while those limits are slightly relaxed for the combination with the Hubble constant measurements to N less than or similar to 20. Future releases of Planck data are expected to reduce the uncertainty by approximately a factor of 3, which will reduce significantly the parameter space of allowed models.  
  Address [Franca, Urbano; Lineros, Roberto A.; Palacio, Joaquim; Pastor, Sergio] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320765300005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1487  
Permanent link to this record
 

 
Author de Salas, P.F.; Lattanzi, M.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O. url  doi
openurl 
  Title Bounds on very low reheating scenarios after Planck Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue (up) 12 Pages 123534 - 9pp  
  Keywords  
  Abstract We consider the case of very low reheating scenarios [T-RH similar to O(MeV)] with a better calculation of the production of the relic neutrino background (with three-flavor oscillations). At 95% confidence level, a lower bound on the reheating temperature T-RH > 4.1 MeV is obtained from big bang nucleosynthesis, while T-RH > 4.7 MeV from Planck data (allowing neutrino masses to vary), the most stringent bound on the reheating temperature to date. Neutrino masses as large as 1 eV are possible for very low reheating temperatures.  
  Address [de Salas, P. F.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Valencia, Spain, Email: lattanzi@fe.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367078600010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2502  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva