toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Feijoo, A.; Wang, W.F.; Xiao, C.W.; Wu, J.J.; Oset, E.; Nieves, J.; Zou, B.S. url  doi
openurl 
  Title A new look at the P-cs states from a molecular perspective Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 839 Issue (up) Pages 137760 - 7pp  
  Keywords  
  Abstract We have a look at the P-cs states generated from the interaction of (D) over bar(*)Xi(c)('*) coupled channels. We consider the blocks of pseudoscalar-baryon (1/2(+) , 3/2(+)) and vector-baryon (1/2(+), 3/2(+)), and find 10 resonant states coupling mostly to (D) over bar Xi(c), <(D)*over bar>*Xi(c), (D) over bar Xi(c)' <(DA novel aspect of the work is the realization that the <(Dover bar>Xi(c), (Dover bar>(s) Lambda(c) or (Dover bar>*Xi(c), D-s*Lambda(c) channels, with a strong transition potential, collaborate to produce a larger attraction than the corresponding states <(Dover bar>Xi(c), <(Dover bar>Lambda(c) or (D) over bar*Xi(c), (D) over bar*Lambda(c) appearing in the generation of the strangenessless P-c states, since in the latter case the transition potential between those channels is zero. The extra attraction obtained in the (D) over bar Xi(c), (D) over bar* Xi(c) pairs preclude the association of the P-cs(4338) state coupling mostly to (D) over bar*Xi(c) while the P-cs(4459) is associated to the state found that couples mostly to (D) over bar Xi(c)'. Four more states appear, like in other molecular pictures, and some of the states are degenerate in spin. Counting different spin states we find 10states, which we hope can be observed in the near future.  
  Address [Feijoo, Albert; Wang, Wen-Fei; Oset, Eulogio; Nieves, Juan] Ctr Mixto Univ Valencia, CSIC Inst Invest Paterna, Dept Fis Teonca, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000991801200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5535  
Permanent link to this record
 

 
Author Vidaña, I.; Feijoo, A.; Albaladejo, M.; Nieves, J.; Oset, E. url  doi
openurl 
  Title Femtoscopic correlation function for the Tcc(3875)+ state Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 846 Issue (up) Pages 138201 - 9pp  
  Keywords Femtoscopy; Tcc  
  Abstract We have conducted a study of the femtoscopic correlation functions for the D0D*+ and D+D*0 channels that build the Tcc state. We develop a formalism that allows us to factorize the scattering amplitudes outside the integrals in the formulas, and the integrals involve the range of the strong interaction explicitly. For a source of size of 1 fm, we find values for the correlation functions of the D0D*+ and D+D*0 channels at the origin around 30 and 2.5, respectively, and we see these observables converging to unity already for relative momenta of the order of 200 MeV. We conduct tests to see the relevance of the different contributions to the correlation function and find that it mostly provides information on the scattering length, but should the correlation functions be measured with the precision of the latest experiments, the effective range of the D0D*+ could also be obtained.  
  Address [Vidana, I.] Univ Catania, Ist Nazl Fis Nucl, Dipartimento Fis Ettore Majorana, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: isaac.vidana@ct.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001092697200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5777  
Permanent link to this record
 

 
Author Albaladejo, M.; Nieves, J.; Ruiz Arriola, E. url  doi
openurl 
  Title Femtoscopic signatures of the lightest S-wave scalar open-charm mesons Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue (up) Pages 014020 - 7pp  
  Keywords  
  Abstract We predict femtoscopy correlation functions for S-wave D(s)ϕ pairs of lightest pseudoscalar open-charm mesons and Goldstone bosons from next-to-leading-order unitarized heavy-meson chiral perturbation theory amplitudes. The effect of the two-state structure around 2300 MeV can be clearly seen in the (S,I)=(0,1/2) Dπ, Dη, and Ds¯K correlation functions, while in the scalar-strange (1,0) sector, the D∗s0(2317)± state lying below the DK threshold produces a depletion of the correlation function near threshold. These exotic states owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D(s). The predicted correlation functions could be experimentally measured and will shed light into the hadron spectrum, confirming that it should be viewed as more than a collection of quark model states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6089  
Permanent link to this record
 

 
Author Montesinos, V.; Albaladejo, M.; Nieves, J.; Tolos, L. url  doi
openurl 
  Title Charge-conjugation asymmetry and molecular content: The Ds0*(2317)± in matter Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 853 Issue (up) Pages 138656 - 10pp  
  Keywords  
  Abstract We analyze the modifications that a dense nuclear medium induces in the D-s0*(2317)(+/-) and D-s1(2460)(+/-). In the vacuum, we consider them as isoscalar D-(*K-) and (D) over bar (()*())(K) over bar S-wave bound states, which are dynamically generated from effective interactions that lead to different Weinberg compositeness scenarios. Matter effects are incorporated through the two-meson loop functions, taking into account the self energies that the D-(*()), (D) over bar (()*()), K, and (K) over bar develop when embedded in a nuclear medium. Although particle-antiparticle [D-s0,s1(()*())(2317,2460)(+) versus D-s0,s1(()*())(2317,2460)(-)] lineshapes are the same in vacuum, we find extremely different density patterns in matter. This charge-conjugation asymmetry mainly stems from the very different kaon and antikaon interaction with the nucleons of the dense medium. We show that the in-medium lineshapes found for these resonances strongly depend on their D-(*()), K/(D) over bar (()*()), K molecular content, and discuss how this novel feature can be used to better determine/constrain the inner structure of these exotic states.  
  Address [Montesinos, V.; Albaladejo, M.; Nieves, J.] UV, Inst Fis Corpuscular, Inst Invest Paterna, Ctr Mixto,CSIC, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: Victor.Montesinos@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001218202500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6137  
Permanent link to this record
 

 
Author Garcia-Recio, C.; Geng, L.S.; Nieves, J.; Salcedo, L.L. url  doi
openurl 
  Title Low-lying even-parity meson resonances and spin-flavor symmetry Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue (up) 1 Pages 016007 - 30pp  
  Keywords  
  Abstract Based on a spin-flavor extension of chiral symmetry, a novel s-wave meson-meson interaction involving members of the rho nonet and of the pi octet is introduced, and its predictions are analyzed. The starting point is the SU(6) version of the SU(3)-flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry-breaking terms are then included to account for the physical meson masses and decay constants in a way that preserves (broken) chiral symmetry. Next, the T-matrix amplitudes are obtained by solving the Bethe-Salpeter equation in a coupled-channel scheme, and the poles are identified with their possible Particle Data Group counterparts. It is shown that most of the low-lying even-parity Particle Data Group meson resonances, especially in the J(P) = 0(+) and 1(+) sectors, can be classified according to multiplets of SU(6). The f(0)(1500), f(1)(1420), and some 0(+)(2(++)) resonances cannot be accommodated within this scheme, and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I >= 3/2 and/or vertical bar Y vertical bar = 2) with masses in the range of 1.4-1.6 GeV, which would complete the 27(1), 10(3), and 10(3)* multiplets of SU(3) circle times SU(2).  
  Address [Garcia-Recio, C.; Salcedo, L. L.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286765100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 585  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva