toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bodenstein, S.; Bordes, J.; Dominguez, C.A.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title QCD sum rule determination of the charm-quark mass Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue (up) 7 Pages 074014 - 4pp  
  Keywords  
  Abstract QCD sum rules involving mixed inverse moment integration kernels are used in order to determine the running charm-quark mass in the (MS) over bar scheme. Both the high and the low energy expansion of the vector current correlator are involved in this determination. The optimal integration kernel turns out to be of the form p(s) = 1 -(s(0)/s)(2), where s(0) is the onset of perturbative QCD. This kernel enhances the contribution of the well known narrow resonances, and reduces the impact of the data in the range s similar or equal to 20-25 GeV2. This feature leads to a substantial reduction in the sensitivity of the results to changes in s(0), as well as to a much reduced impact of the experimental uncertainties in the higher resonance region. The value obtained for the charm-quark mass in the (MS) over bar scheme at a scale of 3 GeV is (m) over bar (c)(3 GeV) = 987 +/- 9 MeV, where the error includes all sources of uncertainties added in quadrature.  
  Address [Bodenstein, S.; Dominguez, C. A.] Univ Cape Town, Ctr Theoret & Math Phys, ZA-7700 Rondebosch, South Africa  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289519700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 604  
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Dominguez, C.A.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title B meson decay constants f(Bc), f(Bs) and f(B) from QCD sum rules Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue (up) 7 Pages 032 - 16pp  
  Keywords Sum Rules; QCD  
  Abstract Finite energy QCD sum rules with Legendre polynomial integration kernels are used to determine the heavy meson decay constant f(Bc), and revisit f(B) and f(Bs). Results exhibit excellent stability in a wide range of values of the integration radius in the complex squared energy plane, and of the order of the Legendre polynomial. Results are f(Bc) = 528 +/- 19 MeV, f(B) = 186 +/- 14 MeV, and f(Bs) = 222 +/- 12 MeV.  
  Address [Baker, M. J.; Bordes, J.; Penarrocha, J.] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: baker.michael.james@googlemail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339422800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1846  
Permanent link to this record
 

 
Author Labiche, M.; Ljungvall, J.; Crespi, F.C.L.; Chen, S.; Bordes, J.; Goasduff, A.; Bottoni, S.; Gamba, E.; Perez-Vidal, R.M.; Bentley, M.A. doi  openurl
  Title Simulation of the AGATA spectrometer and coupling with ancillary detectors Type Journal Article
  Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 59 Issue (up) 7 Pages 158 - 12pp  
  Keywords  
  Abstract The design study of the AGATA array began with the development of the AGATA simulation code using GEANT4. The latter played a key part in the final design of the array and provided a cost effective solution for the early development of the tracking algorithm. The code has since been maintained and developed by the collaboration to provide more realistic simulations, with reaction chambers, ancillary detectors and surrounding mechanical structures completing the entire setup.  
  Address [Labiche, M.] Daresbury Lab, Sci & Technol Facil Council STFC, Keckwick Lane, Warrington, England, Email: marc.labiche@stfc.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001032437400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5597  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva