toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bellomo, N.; Bellini, E.; Hu, B.; Jimenez, R.; Pena-Garay, C.; Verde, L. url  doi
openurl 
  Title Hiding neutrino mass in modified gravity cosmologies Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue (down) 2 Pages 043 - 12pp  
  Keywords cosmological neutrinos; modified gravity; neutrino astronomy; neutrino masses from cosmology  
  Abstract Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.  
  Address [Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Verde, Licia] Univ Barcelona UB IEEC, ICC, Marti & Franques 1, Barcelona 08028, Spain, Email: nicola.bellomo@icc.ub.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399455000043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3078  
Permanent link to this record
 

 
Author Bombacigno, F.; Moretti, F.; Boudet, S.; Olmo, G.J. url  doi
openurl 
  Title Landau damping for gravitational waves in parity-violating theories Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue (down) 2 Pages 009 - 29pp  
  Keywords Gravitational waves in GR and beyond: theory; modified gravity; gravitational waves / experiments; dark matter experiments  
  Abstract We discuss how tensor polarizations of gravitational waves can suffer Landau damping in the presence of velocity birefringence, when parity symmetry is explicitly broken. In particular, we analyze the role of the Nieh-Yan and Chern-Simons terms in modified theories of gravity, showing how the gravitational perturbation in collisionless media can be characterized by a subluminal phase velocity, circumventing the well-known results of General Relativity and allowing for the appearance of the kinematic damping. We investigate in detail the connection between the thermodynamic properties of the medium, such as temperature and mass of the particles interacting with the gravitational wave, and the parameters ruling the parity violating terms of the models. In this respect, we outline how the dispersion relations can give rise in each model to different regions of the wavenumber space, where the phase velocity is subluminal, superluminal or does not exist. Quantitative estimates on the considered models indicate that the phenomenon of Landau damping is not detectable given the sensitivity of present-day instruments.  
  Address [Bombacigno, F.; Moretti, F.; Olmo, Gonzalo J.] Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Carrer Doctor Moliner 50, Valencia 46100, Spain, Email: flavio2.bombacigno@uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001040875600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5624  
Permanent link to this record
 

 
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J. url  doi
openurl 
  Title Boson stars in Palatini f(R) gravity Type Journal Article
  Year 2021 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 38 Issue (down) 19 Pages 194003 - 25pp  
  Keywords boson stars; Palatini formalism; modified gravity  
  Abstract We explore equilibrium solutions of spherically symmetric boson stars in the Palatini formulation of f (R) gravity. We account for the modifications introduced in the gravitational sector by using a recently established correspondence between modified gravity with scalar matter and general relativity with modified scalar matter. We focus on the quadratic theory f (R) = R + xi R-2 and compare its solutions with those found in general relativity, exploring both positive and negative values of the coupling parameter xi. As matter source, a complex, massive scalar field with and without self-interaction terms is considered. Our results show that the existence curves of boson stars in Palatini f (R) gravity are fairly similar to those found in general relativity. Major differences are observed for negative values of the coupling parameter which results in a repulsive gravitational component for high enough scalar field density distributions. Adding self-interactions makes the degeneracy between f (R) and general relativity even more pronounced, leaving very little room for observational discrimination between the two theories.  
  Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, Valencia 46100, Spain, Email: andreu.maso@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000695280300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4964  
Permanent link to this record
 

 
Author Cervantes-Cota, J.L.; de Putter, R.; Linder, E.V. url  doi
openurl 
  Title Induced gravity and the attractor dynamics of dark energy/dark matter Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue (down) 12 Pages 019 - 20pp  
  Keywords modified gravity; dark energy theory  
  Abstract Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity.  
  Address [Cervantes-Cota, Jorge L.] Inst Nacl Invest Nucl, Dept Fis, Mexico City 11801, DF, Mexico, Email: jorge.cervantes@inin.gob.mx  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286930700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 533  
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title Hybrid Modified Gravity Unifying Local Tests, Galactic Dynamics and Late-Time Cosmic Acceleration Type Journal Article
  Year 2013 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 22 Issue (down) 12 Pages 1342006 - 7pp  
  Keywords Modified gravity; late-time cosmic acceleration; dark matter; solar system tests  
  Abstract The nonequivalence between the metric and Palatini formalisms of f(R) gravity is an intriguing feature of these theories. However, in the recently proposed hybrid metric-Palatini gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini, the “true” gravitational field is described by the interpolation of these two nonequivalent approaches. The theory predicts the existence of a light long-range scalar field, which passes the local constraints and affects the galactic and cosmological dynamics. Thus, the theory opens new possibilities for a unified approach, in the same theoretical framework, to the problems of dark energy and dark matter, without distinguishing a priori matter and geometric sources, but taking their dynamics into account under the same standard.  
  Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy, Email: capozzie@na.infn.it;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329048900013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1688  
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title New scalar compact objects in Ricci-based gravity theories Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue (down) 12 Pages 044 - 20pp  
  Keywords modified gravity; gravity; GR black holes; Wormholes  
  Abstract Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic f(R) gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new kind of object which acts as a kind of wormhole membrane. The latter object has Euclidean topology but connects antipodal points of its surface by transferring particles and null rays across its interior in virtually zero affine time. We point out the relevance of these results regarding the existence of compact scalar field objects beyond General Relativity that may effectively act as black hole mimickers.  
  Address [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000507261900041 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4252  
Permanent link to this record
 

 
Author Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N. url  doi
openurl 
  Title Cosmological data analysis of f(R) gravity models Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue (down) 11 Pages 004 - 18pp  
  Keywords modified gravity; cosmological parameters from LSS  
  Abstract A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the Lambda CDM model.  
  Address [Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Valencia 46071, Spain, Email: girones@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284825100004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 315  
Permanent link to this record
 

 
Author Creminelli, P.; Norena, J.; Pena, M.; Simonovic, M. url  doi
openurl 
  Title Khronon inflation Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue (down) 11 Pages 032 - 16pp  
  Keywords inflation; modified gravity; non-gaussianity  
  Abstract We study the possibility that the approximate time shift symmetry during inflation is promoted to the full invariance under time reparametrization t -> (t) over tilde (t), or equivalently under field redefinition of the inflaton phi -> (phi) over tilde(phi). The symmetry allows only two operators at leading order in derivatives, so that all n-point functions of scalar perturbations are fixed in terms of the power spectrum normalization and the speed of sound. During inflation the decaying mode only decays as 1/a and this opens up the possibility to violate some of the consistency relations in the squeezed limit, although this violation is suppressed by the (small) breaking of the field reparametrization symmetry. In particular one can get terms in the 3-point function that are only suppressed by 1/k(L) in the squeezed limit k(L) -> 0 compared to the local shape.  
  Address [Creminelli, Paolo] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy, Email: creminel@ictp.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312263500015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1274  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J. url  doi
openurl 
  Title Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-lnfeld Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue (down) 11 Pages 004 - 26pp  
  Keywords modified gravity; alternatives to inflation; gravity  
  Abstract We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.  
  Address [Jimenez, Jose Beltran] Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, Inst Math & Phys, B-1348 Louvain La Neuve, Belgium, Email: jose.beltran@uclouvain.be;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346105300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2039  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Ringeval, C. url  doi
openurl 
  Title Cascading dust inflation in Born-lnfeld gravity Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue (down) 11 Pages 046 - 30pp  
  Keywords modified gravity; inflation  
  Abstract In the framework of Born-Infeld inspired gravity theories, which deviates from General Relativity (GR) in the high curvature regime, we discuss the viability of Cosmic Inflation without scalar fields. For energy densities higher than the new mass scale of the theory, a gravitating (lust component is shown to generically induce an accelerated expansion of the Universe. Within such a simple scenario, inflation gracefiffly exits when the CR regime is recovered, but the Universe would remain matter dominated. In order to implement a reheating era after inflation, we then consider inflation to be driven by a mixture of unstable dust species decaying into radiation. Because the speed of sound gravitates within the BornInfeld model under consideration, our scenario ends up being predictive on various open questions of the inflationary paradigm. The total number of e-folds of acceleration is given by the lifetime of the unstable dust components and is related to the duration of reheating. As a result, inflation does not last much longer than the number of e-folds of deceleration allowing a small spatial curvature and large scale deviations to isotropy to be observable today. Energy densities are self-regulated as inflation can only start for a total energy density less than a threshold value, again related to the species' lifetime. Above this threshold, the Universe may bc nee thereby avoiding a singularity. Another distinctive feature is that the accelerated expansion is of the superinflationary ldnd, namely the first Hubble flow function is negative. We show however that the tensor modes are never excited and the tensor-to-scalar ratio is always vanishing, independently of the energy scale of inflation.  
  Address [Jimenez, Jose Beltran] Aix Marseille Univ, Ctr Phys Theor, UMR 7332, F-13288 Marseille, France, Email: jose.beltran@cpt.univ-mrs.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365821200047 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2478  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva