|   | 
Details
   web
Records
Author Cosme, C.; Figueroa, D.G.; Loayza, N.
Title Gravitational wave production from preheating with trilinear interactions Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue (up) 5 Pages 023 - 30pp
Keywords physics of the early universe; primordial gravitational waves (theory); gravita-tional waves; sources; particle physics-cosmology connection
Abstract We investigate the production of gravitational waves (GWs) during preheating with monomial/polynomial inflationary potentials, considering a trilinear coupling & phi;x2 between a singlet inflaton & phi; and a daughter scalar field x. For sufficiently large couplings, the trilinear interaction leads to an exponential production of x particles and, as a result, a large stochastic GW background (SGWB) is generated throughout the process. We study the linear and non-linear dynamics of preheating with lattice simulations, following the production of GWs through all relevant stages. We find that large couplings lead to SGWBs with amplitudes today that can reach up to h2 �(0) GW <^> 5 & BULL; 10-9. These backgrounds are however peaked at high frequencies fp > 5 & BULL; 106 Hz, which makes them undetectable by current/planned GW observatories. As the amount of GWs produced is in any case remarkable, we discuss the prospects for probing the SGWB indirectly by using constraints on the effective number of relativistic species in the universe Neff.
Address [Cosme, Catarina; Figueroa, Daniel G.; Loayza, Nicolas] Univ Valencia CSIC, Inst Fis Corpuscular IFIC, Parc Cientif UV,C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: catarina.cosme@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001038638500007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5660
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Miralda-Escude, J.; Pena-Garay, C.; Quilis, V.
Title Neutrino halos in clusters of galaxies and their weak lensing signature Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue (up) 6 Pages 027 - 14pp
Keywords cosmological neutrinos; gravitational lensing; galaxy clusters
Abstract We study whether non-linear gravitational effects of relic neutrinos on the development of clustering and large-scale structure may be observable by weak gravitational lensing. We compute the density profile of relic massive neutrinos in a spherical model of a cluster of galaxies, for several neutrino mass schemes and cluster masses. Relic neutrinos add a small perturbation to the mass profile, making it more extended in the outer parts. In principle, this non-linear neutrino perturbation is detectable in an all-sky weak lensing survey such as EUCLID by averaging the shear profile of a large fraction of the visible massive clusters in the universe, or from its signature in the general weak lensing power spectrum or its cross-spectrum with galaxies. However, correctly modeling the distribution of mass in baryons and cold dark matter and suppressing any systematic errors to the accuracy required for detecting this neutrino perturbation is severely challenging.
Address [Villaescusa-Navarro, Francisco] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: villa@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000292332400027 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 677
Permanent link to this record
 

 
Author Martinelli, M.; Scarcella, F.; Hogg, N.B.; Kavanagh, B.J.; Gaggero, D.; Fleury, P.
Title Dancing in the dark: detecting a population of distant primordial black holes Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue (up) 8 Pages 006 - 47pp
Keywords dark matter theory; gravitational waves / experiments; gravitational waves / sources; primordial black holes
Abstract Primordial black holes (PBHs) are compact objects proposed to have formed in the early Universe from the collapse of small-scale over-densities. Their existence may be detected from the observation of gravitational waves (GWs) emitted by PBH mergers, if the signals can be distinguished from those produced by the merging of astrophysical black holes. In this work, we forecast the capability of the Einstein Telescope, a proposed third-generation GW observatory, to identify and measure the abundance of a subdominant population of distant PBHs, using the difference in the redshift evolution of the merger rate of the two populations as our discriminant. We carefully model the merger rates and generate realistic mock catalogues of the luminosity distances and errors that would be obtained from GW signals observed by the Einstein Telescope. We use two independent statistical methods to analyse the mock data, finding that, with our more powerful, likelihood-based method, PBH abundances as small as fPBH approximate to 7 x 10(-6) ( fPBH approximate to 2 x 10(-6)) would be distinguishable from f(PBH) = 0 at the level of 3 sigma with a one year (ten year) observing run of the Einstein Telescope. Our mock data generation code, darksirens, is fast, easily extendable and publicly available on GitLab.
Address [Martinelli, Matteo] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Rome, Italy, Email: matteo.martinelli@inaf.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000911612900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5461
Permanent link to this record