|   | 
Details
   web
Records
Author Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R.
Title Identification of dark matter particles with LHC and direct detection data Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue (down) 5 Pages 055008 - 7pp
Keywords
Abstract Dark matter (DM) is currently searched for with a variety of detection strategies. Accelerator searches are particularly promising, but even if weakly interacting massive particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the DM in the Universe Omega(DM). We show that a significantly better reconstruction of the DM properties can be obtained with a combined analysis of LHC and direct detection data, by making a simple Ansatz on the weakly interacting massive particles local density rho(0)((chi) over bar1), i.e., by assuming that the local density scales with the cosmological relic abundance, (rho(0)((chi) over bar1)/rho(DM)) = (Omega(0)((chi) over bar1)/Omega(DM)). We demonstrate this method in an explicit example in the context of a 24-parameter supersymmetric model, with a neutralino lightest supersymmetric particle in the stau coannihilation region. Our results show that future ton-scale direct detection experiments will allow to break degeneracies in the supersymmetric parameter space and achieve a significantly better reconstruction of the neutralino composition and its relic density than with LHC data alone.
Address [Bertone, G.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000281741400005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 380
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R.
Title MSSM forecast for the LHC Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue (down) 5 Pages 043 - 48pp
Keywords Beyond Standard Model; Supersymmetric Effective Theories
Abstract We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of M-Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e(+)e(-) data) is considered, the preferred region (for μ> 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-mu possibilities.
Address [Eugenia Cabrera, Maria; Alberto Casas, J.] UAM, IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: maria.cabrera@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000278251300005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 435
Permanent link to this record
 

 
Author Gunion, J.F.; Lopez-Fogliani, D.E.; Roszkowski, L.; Ruiz de Austri, R.; Varley, T.A.
Title Next-to-minimal supersymmetric model Higgs scenarios for partially universal GUT scale boundary conditions Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue (down) 5 Pages 055026 - 17pp
Keywords
Abstract We examine the extent to which it is possible to realize the NMSSM “ideal Higgs” models espoused in several papers by Gunion et al. in the context of partially universal GUT scale boundary conditions. To this end we use the powerful methodology of nested sampling. We pay particular attention to whether ideal-Higgs-like points not only pass LEP constraints but are also acceptable in terms of the numerous constraints now available, including those from the Tevatron and B-factory data, (g – 2)(mu) and the relic density Omega h(2). In general for this particular methodology and range of parameters chosen, very few points corresponding to said previous studies were found, and those that were found were at best 2 sigma away from the preferred relic density value. Instead, there exist a class of points, which combine a mostly singlet-like Higgs with a mostly singlino-like neutralino coannihilating with the lightest stau, that are able to effectively pass all implemented constraints in the region 80 < m(h) < 100. It seems that the spin-independent direct detection cross section acts as a key discriminator between ideal Higgs points and the hard to detect singlino-like points.
Address [Gunion, JF] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000295327700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 775
Permanent link to this record
 

 
Author Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Pieri, L.; Ruiz de Austri, R.; Trotta, R.
Title Complementarity of indirect and accelerator dark matter searches Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue (down) 5 Pages 055014 - 10pp
Keywords
Abstract Even if supersymmetric particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the dark matter (DM) in the Universe using LHC data alone. We study the complementarity of LHC and DM indirect searches, working out explicitly the reconstruction of the DM properties for a specific benchmark model in the coannihilation region of a 24-parameters supersymmetric model. Combining mock high-luminosity LHC data with presentday null searches for gamma rays from dwarf galaxies with the Fermi Large Area Telescope, we show that current Fermi Large Area Telescope limits already have the capability of ruling out a spurious wino-like solution which would survive using LHC data only, thus leading to the correct identification of the cosmological solution. We also demonstrate that upcoming Planck constraints on the reionization history will have a similar constraining power and discuss the impact of a possible detection of gamma rays from DM annihilation in the Draco dwarf galaxy with a Cherenkov-Telescope-Array-like experiment. Our results indicate that indirect searches can be strongly complementary to the LHC in identifying the DM particles, even when astrophysical uncertainties are taken into account.
Address [Bertone, G.] Univ Amsterdam, GRAPPA Inst, NL-1090 GL Amsterdam, Netherlands
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000301647300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 948
Permanent link to this record
 

 
Author Kim, J.S.; Rolbiecki, K.; Ruiz de Austri, R.
Title Model-independent combination of diphoton constraints at 750 GeV Type Journal Article
Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue (down) 5 Pages 251 - 8pp
Keywords
Abstract Motivated by the recent diphoton excess reported by both the ATLAS and CMS collaborations, we provide a model-independent combination of diphoton results obtained at root s = 8 and 13 TeV at the LHC. We consider resonant s-channel production of a spin-0 and spin-2 particle with a mass of 750 GeV that subsequently decays to two photons. The size of the excess reported by ATLAS appears to be in a slight tension with other measurements under the spin-2 particle hypothesis.
Address [Kim, Jong Soo] IFT UAM CSIC, Inst Fis Teor, C Nicolas Cabrera 13-15, Madrid 28049, Spain, Email: krzysztof.rolbiecki@desy.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000399465300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3059
Permanent link to this record
 

 
Author De Romeri, V.; Kim, J.S.; Martin Lozano, V.; Rolbiecki, K.; Ruiz de Austri, R.
Title Confronting dark matter with the diphoton excess from a parent resonance decay Type Journal Article
Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue (down) 5 Pages 262 - 13pp
Keywords
Abstract A diphoton excess with an invariant mass of about 750 GeV has been recently reported by both ATLAS and CMS experiments at LHC. While the simplest interpretation requires the resonant production of a 750 GeV (pseudo) scalar, here we consider an alternative setup, with an additional heavy parent particle which decays into a pair of 750 GeV resonances. This configuration improves the agreement between the 8 and 13 TeV data. Moreover, we include a dark matter candidate in the form of a Majorana fermion which interacts through the 750 GeV portal. The invisible decays of the light resonance help to suppress additional decay channels into Standard Model particles in association with the diphoton signal. We realise our hierarchical framework in the context of an effective theory, and we analyse the diphoton signal as well as the consistency with other LHC searches. We finally address the interplay of the LHC results with the dark matter phenomenology, namely the compatibility with the relic density abundance and the indirect detection bounds.
Address [De Romeri, Valentina; Kim, Jong Soo; Martin-Lozano, Victor; Rolbiecki, Krzysztof] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain, Email: valentina.deromeri@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000399931700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3088
Permanent link to this record
 

 
Author Caron, S.; Gomez-Vargas, G.A.; Hendriks, L.; Ruiz de Austri, R.
Title Analyzing gamma rays of the Galactic Center with deep learning Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue (down) 5 Pages 058 - 24pp
Keywords gamma ray experiments; dark matter simulations
Abstract We present the application of convolutional neural networks to a particular problem in gamma ray astronomy. Explicitly, we use this method to investigate the origin of an excess emission of GeV gamma rays in the direction of the Galactic Center, reported by several groups by analyzing Fermi-LAT data. Interpretations of this excess include gamma rays created by the annihilation of dark matter particles and gamma rays originating from a collection of unresolved point sources, such as millisecond pulsars. We train and test convolutional neural networks with simulated Fermi-LAT images based on point and diffuse emission models of the Galactic Center tuned to measured gamma ray data. Our new method allows precise measurements of the contribution and properties of an unresolved population of gamma ray point sources in the interstellar diffuse emission model. The current model predicts the fraction of unresolved point sources with an error of up to 10% and this is expected to decrease with future work.
Address [Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, Mailbox 79,POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: scaron@cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000432869300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3582
Permanent link to this record
 

 
Author Amoroso, S.; Caron, S.; Jueid, A.; Ruiz de Austri, R.; Skands, P.
Title Estimating QCD uncertainties in Monte Carlo event generators for gamma-ray dark matter searches Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue (down) 5 Pages 007 - 44pp
Keywords dark matter simulations; dark matter theory; gamma ray theory
Abstract Motivated by the recent galactic center gamma-ray excess identified in the Fermi-LAT data, we perform a detailed study of QCD fragmentation uncertainties in the modeling of the energy spectra of gamma-rays from Dark-Matter (DM) annihilation. When Dark-Matter particles annihilate to coloured final states, either directly or via decays such as W(*) -> qq-', photons are produced from a complex sequence of shower, hadronisation and hadron decays. In phenomenological studies their energy spectra are typically computed using Monte Carlo event generators. These results have however intrinsic uncertainties due to the specific model used and the choice of model parameters, which are difficult to asses and which are typically neglected. We derive a new set of hadronisation parameters (tunes) for the PYTHIA 8.2 Monte Carlo generator from a fit to LEP and SLD data at the Z peak. For the first time we also derive a conservative set of uncertainties on the shower and hadronisation model parameters. Their impact on the gamma-ray energy spectra is evaluated and discussed for a range of DM masses and annihilation channels. The spectra and their uncertainties are also provided in tabulated form for future use. The fragmentation-parameter uncertainties may be useful for collider studies as well.
Address [Amoroso, Simone] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: simone.amoroso@desy.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000467288200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4006
Permanent link to this record
 

 
Author Felea, D.; Mamuzic, J.; Maselek, R.; Mavromatos, N.E.; Mitsou, V.A.; Pinfold, J.L.; Ruiz de Austri, R.; Sakurai, K.; Santra, A.; Vives, O.
Title Prospects for discovering supersymmetric long-lived particles with MoEDAL Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue (down) 5 Pages 431 - 12pp
Keywords
Abstract We present a study on the possibility of searching for long-lived supersymmetric partners with the MoEDAL experiment at the LHC. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta)stable electrically charged particles. We focus on prospects of directly detecting long-lived sleptons in a phenomenologically realistic model which involves an intermediate neutral long-lived particle in the decay chain. This scenario is not yet excluded by the current data from ATLAS or CMS, and is compatible with astrophysical constraints. Using Monte Carlo simulation, we compare the sensitivities of MoEDAL versus ATLAS in scenarios where MoEDAL could provide discovery reach complementary to ATLAS and CMS, thanks to looser selection criteria combined with the virtual absence of background. It is also interesting to point out that, in such scenarios, in which charged staus are the main long-lived candidates, the relevant mass range for MoEDAL is compatible with a potential role of Supersymmetry in providing an explanation for the anomalous events observed by the ANITA detector.
Address [Felea, D.] Inst Space Sci, POB MG 23, Bucharest 077125, Magurele, Romania, Email: daniel.felea@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000536572700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4411
Permanent link to this record
 

 
Author Balazs, C. et al; Mamuzic, J.; Ruiz de Austri, R.
Title A comparison of optimisation algorithms for high-dimensional particle and astrophysics applications Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue (down) 5 Pages 108 - 46pp
Keywords Phenomenology of Field Theories in Higher Dimensions; Supersymmetry Phenomenology
Abstract Optimisation problems are ubiquitous in particle and astrophysics, and involve locating the optimum of a complicated function of many parameters that may be computationally expensive to evaluate. We describe a number of global optimisation algorithms that are not yet widely used in particle astrophysics, benchmark them against random sampling and existing techniques, and perform a detailed comparison of their performance on a range of test functions. These include four analytic test functions of varying dimensionality, and a realistic example derived from a recent global fit of weak-scale supersymmetry. Although the best algorithm to use depends on the function being investigated, we are able to present general conclusions about the relative merits of random sampling, Differential Evolution, Particle Swarm Optimisation, the Covariance Matrix Adaptation Evolution Strategy, Bayesian Optimisation, Grey Wolf Optimisation, and the PyGMO Artificial Bee Colony, Gaussian Particle Filter and Adaptive Memory Programming for Global Optimisation algorithms.
Address [Balazs, Csaba] Monash Univ, Sch Phys & Astron, Melbourne, Vic 3800, Australia, Email: bstienen@science.ru.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000762408900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5149
Permanent link to this record