|   | 
Details
   web
Records
Author Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.; Sarikas, S.
Title Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue (down) 3 Pages 035 - 18pp
Keywords big bang nucleosynthesis; neutrino properties; cosmological neutrinos; physics of the early universe
Abstract The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N-eff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N-eff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, eta(nu) = eta(nu e) + eta(nu mu) + eta(nu tau) and the initial electron neutrino asymmetry eta(in)(nu e), solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the nu(e)-(nu) over bar (e) asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial H-2/H density ratio and He-4 mass fraction. Note that taking the baryon fraction as measured by WMAP, the H-2/H abundance plays a relevant role in constraining the allowed regions in the eta(nu)-eta(in)(nu e) plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N-eff as a function of the mixing parameter theta(13), and point out the upper bound N-eff less than or similar to 3.4. Comparing these results with the forthcoming measurement of N-eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.
Address [Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy, Email: mangano@na.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000291258300035 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 642
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Laveder, M.; Pastor, S.; Pisanti, O.; Truong, N.
Title Cosmological bounds on neutrino statistics Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue (down) 3 Pages 050 - 18pp
Keywords cosmological neutrinos; neutrino properties; big bang nucleosynthesis; cosmological parameters from CMBR
Abstract We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than 2 sigma.
Address [de Salas, P. F.; Gariazzo, S.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000428984100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3551
Permanent link to this record
 

 
Author Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Pastor, S.; Tortola, M.
Title Non-unitary three-neutrino mixing in the early Universe Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue (down) 3 Pages 046 - 18pp
Keywords cosmological neutrinos; neutrino properties; neutrino theory
Abstract Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.
Address [Gariazzo, Stefano] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000959757500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5516
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abraham, J. et al); Pastor, S.
Title The fluorescence detector of the Pierre Auger Observatory Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 620 Issue (down) 2-3 Pages 227-251
Keywords Cosmic rays; Fluorescence detector
Abstract The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.
Address [Bohacova, M.; Chudoba, J.; Grygar, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Nyklicek, M.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic, Email: prouza@fzu.cz
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000280601700018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 400
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abraham, J. et al); Pastor, S.
Title A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory Type Journal Article
Year 2010 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 33 Issue (down) 2 Pages 108-129
Keywords Cosmic rays; Extensive air showers; Air fluorescence method; Atmosphere; Aerosols; Lidar; Bi-static lidar
Abstract The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierre Auger Observatory since the start of regular operations in 2004, and includes a discussion of the impact of these measurements oil air shower reconstructions. Between 10(18) and 10(20) eV, the systematic Uncertainties due to all atmospheric effects increase from 4% to 8% in measurements of shower energy, and 4 g cm(-2) to 8 g cm(-2) in measurements of the shower maximum.
Address [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI 53706 USA, Email: sybenzvi@icecube.wisc.cdu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes ISI:000275514800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 486
Permanent link to this record
 

 
Author Castorina, E.; Franca, U.; Lattanzi, M.; Lesgourgues, J.; Mangano, G.; Melchiorri, A.; Pastor, S.
Title Cosmological lepton asymmetry with a nonzero mixing angle theta(13) Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue (down) 2 Pages 023517 - 11pp
Keywords
Abstract While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle theta(13), and show that for large theta(13) the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from big bang nucleosynthesis, while the limits on the total neutrino mass from cosmological data are essentially independent of theta(13). Finally, we perform a forecast for Cosmic Origins Explorer, taken as an example of a future cosmic microwave background experiment, and find that it could improve the limits on the total lepton asymmetry approximately by up to a factor 6.6.
Address [Castorina, Emanuele] SISSA, I-34136 Trieste, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000306320000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1093
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title A search for point sources of EeV neutrons Type Journal Article
Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 760 Issue (down) 2 Pages 148 - 11pp
Keywords cosmic rays; Galaxy: disk; methods: data analysis
Abstract A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 degrees to +15 degrees in declination using four different energy ranges above 1 EeV (10(18) eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, Lisbon, Portugal
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000311217000052 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1218
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Large-scale distribution of arrival directions of cosmic rays detected above 10^18 eV at the Pierre Auger Observatory Type Journal Article
Year 2012 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.
Volume 203 Issue (down) 2 Pages 34 - 20pp
Keywords astroparticle physics; cosmic rays
Abstract A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10(18) eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10(18) eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, Lisbon, Portugal
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0067-0049 ISBN Medium
Area Expedition Conference
Notes WOS:000312100500018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1272
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue (down) 2 Pages 026 - 20pp
Keywords ultra high energy cosmic rays; cosmic ray experiments
Abstract To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.
Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Santo, C. E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000315576400026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1360
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S.
Title A search for point sources of EeV photons Type Journal Article
Year 2014 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 789 Issue (down) 2 Pages 160 - 12pp
Keywords astroparticle physics; cosmic rays; methods: data analysis
Abstract Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85 degrees to +20 degrees, in an energy range from 10(17.3) eV to 10(18.5) eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm(-2) s(-1), and no celestial direction exceeds 0.25 eV cm(-2) s(-1). These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.
Address [Aab, A.; Buchholz, P.; Erfani, M.; Froehlich, U.; Heimann, P.; Homola, P.; Kuempel, D.; Niechciol, M.; Ochilo, L.; Risse, M.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000338674900069 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1842
Permanent link to this record