|   | 
Details
   web
Records
Author Boubekeur, L.; Giusarma, E.; Mena, O.; Ramirez, H.
Title Phenomenological approaches of inflation and their equivalence Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue (up) 8 Pages 083006 - 8pp
Keywords
Abstract In this work, we analyze two possible alternative and model-independent approaches to describe the inflationary period. The first one assumes a general equation of state during inflation due to Mukhanov, while the second one is based on the slow-roll hierarchy suggested by Hoffman and Turner. We find that, remarkably, the two approaches are equivalent from the observational viewpoint, as they single out the same areas in the parameter space, and agree with the inflationary attractors where successful inflation occurs. Rephrased in terms of the familiar picture of a slowly rolling, canonically normalized scalar field, the resulting inflaton excursions in these two approaches are almost identical. Furthermore, once the Galactic dust polarization data from Planck are included in the numerical fits, inflaton excursions can safely take sub-Planckian values.
Address [Boubekeur, Lotfi; Mena, Olga; Ramirez, Hector] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000353138800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2196
Permanent link to this record
 

 
Author Di Valentino, E.; Giusarma, E.; Mena, O.; Melchiorri, A.; Silk, J.
Title Cosmological limits on neutrino unknowns versus low redshift priors Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue (up) 8 Pages 083527 - 11pp
Keywords
Abstract Recent cosmic microwave background (CMB) temperature and polarization anisotropy measurements from the Planck mission have significantly improved previous constraints on the neutrino masses as well as the bounds on extended models with massless or massive sterile neutrino states. However, due to parameter degeneracies, additional low redshift priors are mandatory in order to sharpen the CMB neutrino bounds. We explore here the role of different priors on low redshift quantities, such as the Hubble constant, the cluster mass bias, and the reionization optical depth tau. Concerning current priors on the Hubble constant and the cluster mass bias, the bounds on the neutrino parameters may differ appreciably depending on the choices adopted in the analyses. With regard to future improvements in the priors on the reionization optical depth, a value of tau = 0.05 +/- 0.01, motivated by astrophysical estimates of the reionization redshift, would lead to Sigma m(nu) < 0.0926 eV at 90% C.L., when combining the full Planck measurements, baryon acoustic oscillation, and Planck clusters data, thereby opening the window to unravel the neutrino mass hierarchy with existing cosmological probes.
Address [Di Valentino, Eleonora; Silk, Joseph] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000375203600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2643
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Gerbino, M.; Giusarma, E.; Mena, O.
Title Dark radiation and inflationary freedom after Planck 2015 Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue (up) 8 Pages 083523 - 28pp
Keywords
Abstract The simplest inflationary models predict a primordial power spectrum (PPS) of the curvature fluctuations that can be described by a power-law function that is nearly scale invariant. It has been shown, however, that the low-multipole spectrum of the cosmic microwave background anisotropies may hint at the presence of some features in the shape of the scalar PPS, which could deviate from its canonical power-law form. We study the possible degeneracies of this nonstandard PPS with the active neutrino masses, the effective number of relativistic species, and a sterile neutrino or a thermal axion mass. The limits on these additional parameters are less constraining in a model with a nonstandard PPS when including only the temperature autocorrelation spectrum measurements in the data analyses. The inclusion of the polarization spectra noticeably helps in reducing the degeneracies, leading to results that typically show no deviation from the Lambda CDM model with a standard power-law PPS. These findings are robust against changes in the function describing the noncanonical PPS. Albeit current cosmological measurements seem to prefer the simple power-law PPS description, the statistical significance to rule out other possible parametrizations is still very poor. Future cosmological measurements are crucial to improve the present PPS uncertainties.
Address [Di Valentino, Eleonora] Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France, Email: valentin@iap.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000374960700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2644
Permanent link to this record
 

 
Author Giusarma, E.; Gerbino, M.; Mena, O.; Vagnozzi, S.; Ho, S.; Freese, K.
Title Improvement of cosmological neutrino mass bounds Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue (up) 8 Pages 083522 - 8pp
Keywords
Abstract The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey in the form of the full shape of the power spectrum, and with baryon acoustic oscillation measurements, provide a 95% confidence level (C.L.) upper bound on the sum of the three active neutrinos Sigma m(nu) < 0.183 eV, among the tightest neutrino mass bounds in the literature, to date, when the same data sets are taken into account. This very same data combination is able to set, at similar to 70% C.L., an upper limit on Sigma m(nu) of 0.0968 eV, a value that approximately corresponds to the minimal mass expected in the inverted neutrino mass hierarchy scenario. If high-multipole polarization data from Planck is also considered, the 95% C.L. upper bound is tightened to Sigma m(nu) < 0.176 eV. Further improvements are obtained by considering recent measurements of the Hubble parameter. These limits are obtained assuming a specific nondegenerate neutrino mass spectrum; they slightly worsen when considering other degenerate neutrino mass schemes. Low-redshift quantities, such as the Hubble constant or the reionization optical depth, play a very important role when setting the neutrino mass constraints. We also comment on the eventual shifts in the cosmological bounds on Sigma m(nu) when possible variations in the former two quantities are addressed.
Address [Giusarma, Elena; Ho, Shirley] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA, Email: egiusarm@andrew.cmu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000387120400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2855
Permanent link to this record