|   | 
Details
   web
Records
Author Silva, J.E.G.; Maluf, R.V.; Olmo, G.J.; Almeida, C.A.S.
Title Braneworlds in f(Q) gravity Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue (up) 2 Pages 024033 - 15pp
Keywords
Abstract We propose a braneworld scenario in a modified symmetric teleparallel gravitational theory, where the dynamics for the gravitational field is encoded in the nonmetricity tensor rather than in the curvature. Assuming a single real scalar field with a sine-Gordon self-interaction, the generalized quadratic nonmetricity invariant Q controls the brane width while keeping the shape of the energy density. By considering power corrections of the invariant Q in the gravitational Lagrangian, the sine-Gordon potential is modified exhibiting new barriers and false vacuum. As a result, the domain wall brane obtains an inner structure, and it undergoes a splitting process. In addition, we also propose a nonminimal coupling between a bulk fermion field and the nonmetricity invariant Q. Such geometric coupling leads to a massless chiral fermion bound to the 3-brane and a stable tower of nonlocalized massive states.
Address [Silva, J. E. G.] Univ Fed do Cariri UFCA, Ave Tenente Raimundo Rocha,Cidade Universitaria, BR-63048080 Juazeiro do Norte, CE, Brazil, Email: euclides.silva@ufca.edu.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000880673200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5410
Permanent link to this record
 

 
Author Ramalho, M.; Suhonen, J.; Kostensalo, J.; Alcala, G.A.; Algora, A.; Fallot, M.; Porta, A.; Zakari-Issoufou, A.A.
Title Analysis of the total beta-electron spectrum of( 92)Rb: Implications for the reactor flux anomalies Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 106 Issue (up) 2 Pages 024315 - 7pp
Keywords
Abstract We present here a microscopic nuclear-structure calculation of a beta-electron spectrum including all the beta-decay branches of a high Q-value reactor fission product contributing significantly to the reactor antineutrino energy spectrum. We perform large-scale nuclear shell-model calculations of the total electron spectrum for the beta(-) decay of Rb-92 to states in Sr-92 using a computer cluster. We exploit the beta-branching data of a recent total absorption gamma-ray spectroscopy (TAGS) measurement to determine the effective values of the weak axial-vector coupling, g(A), and the weak axial charge, g(A)(gamma(5)). By using the TAGS data we avoid the bias stemming from the pandemonium effect which is a systematic error biasing the usual beta-decay measurements. We take fully into account all the involved allowed and forbidden beta transitions, in particular the first-forbidden nonunique ones which have earlier been shown to be relevant in the context of the reactor-antineutrino flux anomaly and the unexplained spectral shoulder, the “bump,” the former one having been interpreted as one of the strongest evidence for the existence of sterile neutrinos. Here we are able to present quantitative evidence for the relevance of forbidden nonunique beta(-) decays in a total beta spectrum of a fission product, in this case( 92)Rb, which is one of the major contributors to the total reactor antineutrino spectral shape. We demonstrate that taking the forbidden spectral shapes fully into consideration leads for Rb-92 to a 2.6%-4.6% reduction in the expected inverse beta-decay rate at the reactor antineutrino telescopes. We also confirm by our calculation of a total beta-electron spectrum that the forbidden transitions can contribute to the formation of the spectral bump in the reactor-antineutrino flux profile.
Address [Ramalho, M.; Suhonen, J.] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland, Email: madeoliv@jyu.fi;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000889134200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5429
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title gamma-Ray Emission from Classical Nova V392 Per: Measurements from Fermi and HAWC Type Journal Article
Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 940 Issue (up) 2 Pages 141 - 14pp
Keywords
Abstract This paper reports on the gamma-ray properties of the 2018 Galactic nova V392 Per, spanning photon energies similar to 0.1 GeV-100 TeV by combining observations from the Fermi Gamma-ray Space Telescope and the HAWC Observatory. As one of the most rapidly evolving gamma-ray signals yet observed for a nova, GeV gamma-rays with a power-law spectrum with an index Gamma = 2.0 +/- 0.1 were detected over 8 days following V392 Per's optical maximum. HAWC observations constrain the TeV gamma-ray signal during this time and also before and after. We observe no statistically significant evidence of TeV gamma-ray emission from V392 Per, but present flux limits. Tests disfavor the extension of the Fermi Large Area Telescope spectrum to energies above 5 TeV by 2 standard deviations (95%) or more. We fit V392 Per's GeV gamma-rays with hadronic acceleration models, incorporating optical observations, and compare the calculations with HAWC limits.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: linneman@msu.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000898877400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5444
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Angular Analysis of D0 -> x plus x-mu plus mu- and D0 -> K plus K-mu plus mu- Decays and Search for CP Violation Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 128 Issue (up) 22 Pages 221801 - 11pp
Keywords
Abstract The first full angular analysis and an updated measurement of the decay-rate CP asymmetry of the D0→π+π−μ+μ− and D0→K+K−μ+μ− decays are reported. The analysis uses proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. The data set corresponds to an integrated luminosity of 9 fb−1. The full set of CP-averaged angular observables and their CP asymmetries are measured as a function of the dimuon invariant mass. The results are consistent with expectations from the standard model and with CP symmetry.
Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000811308400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5267
Permanent link to this record
 

 
Author Borys, D. et al; Brzezinski, K.
Title ProTheRaMon-a GATE simulation framework for proton therapy range monitoring using PET imaging Type Journal Article
Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 67 Issue (up) 22 Pages 224002 - 15pp
Keywords proton therapy; GATE; Monte Carlo simulations; J-PET; medical imaging
Abstract Objective. This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach. The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. Main results. ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance. We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github (Borys et al 2022).
Address [Borys, Damian] Silesian Tech Univ, Dept Syst Biol & Engn, Gliwice, Poland, Email: damin.borys@polsl.pl
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000885248200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5416
Permanent link to this record