|   | 
Details
   web
Records
Author Babichev, E.; Fabbri, A.
Title Rotating black holes in massive gravity Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue (down) 8 Pages 084019 - 7pp
Keywords
Abstract We present a solution for rotating black holes in massive gravity. We first give a solution of massive gravity with one dynamical metric. Both metrics of this solution are expressed in the advanced Eddington-Finkelstein-like coordinates: the physical metric has the original Kerr line element, while the fiducial metric is flat, but written in a rotating Eddington-Finkelstein form. For the bigravity theory we give an analogue of this solution: the two metrics have the original Kerr form, but, in general, different black hole masses. The generalization of the solution to include the electric charge is also given; it is an analogue of the Kerr-Newman solution in general relativity. We also discuss further possible ways to generalize the solutions.
Address [Babichev, Eugeny] Univ Paris 11, Lab Phys Theor Orsay, F-91405 Orsay, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000343773100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1984
Permanent link to this record
 

 
Author del Rio, A.; Navarro-Salas, J.; Torrenti, F.
Title Renormalized stress-energy tensor for spin-1/2 fields in expanding universes Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue (down) 8 Pages 084017 - 15pp
Keywords
Abstract We provide an explicit expression for the renormalized expectation value of the stress-energy tensor of a spin-1/2 field in a spatially flat Friedmann-Lemaitre-Robertson-Walker universe. Its computation is based on the extension of the adiabatic regularization method to fermion fields introduced recently in the literature. The tensor is given in terms of UV-finite integrals in momentum space, which involve the mode functions that define the quantum state. As illustrative examples of the method efficiency, we see how to compute the renormalized energy density and pressure in two interesting cosmological scenarios: a de Sitter spacetime and a radiation-dominated universe. In the second case, we explicitly show that the late-time renormalized stress-energy tensor behaves as that of classical cold matter. We also check that, if we obtain the adiabatic expansion of the scalar field mode functions with a similar procedure to the one used for fermions, we recover the well-known WKB-type expansion.
Address [del Rio, Adrian; Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: adrian.rio@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000343773100003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1985
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J.
Title Yang-Mills two-point functions in linear covariant gauges Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue (down) 8 Pages 085014 - 14pp
Keywords
Abstract In this paper we use two different but complementary approaches in order to study the ghost propagator of a pure SU(3) Yang-Mills theory quantized in the linear covariant gauges, focusing on its dependence on the gauge-fixing parameter xi in the deep infrared. In particular, we first solve the Schwinger-Dyson equation that governs the dynamics of the ghost propagator, using a set of simplifying approximations, and under the crucial assumption that the gluon propagators for xi > 0 are infrared finite, as is the case in the Landau gauge (xi = 0). Then we appeal to the Nielsen identities, and express the derivative of the ghost propagator with respect to xi in terms of certain auxiliary Green's functions, which are subsequently computed under the same assumptions as before. Within both formalisms we find that for xi > 0 the ghost dressing function approaches zero in the deep infrared, in sharp contrast to what happens in the Landau gauge, where it is known to saturate at a finite (nonvanishing) value. The Nielsen identities are then extended to the case of the gluon propagator, and the xi-dependence of the corresponding gluon masses is derived using as input the results obtained in the previous steps. The result turns out to be logarithmically divergent in the deep infrared; the compatibility of this behavior with the basic assumption of a finite gluon propagator is discussed, and a specific Ansatz is put forth, which readily reconciles both features.
Address [Aguilar, A. C.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000352471500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2189
Permanent link to this record
 

 
Author Boubekeur, L.; Giusarma, E.; Mena, O.; Ramirez, H.
Title Phenomenological approaches of inflation and their equivalence Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue (down) 8 Pages 083006 - 8pp
Keywords
Abstract In this work, we analyze two possible alternative and model-independent approaches to describe the inflationary period. The first one assumes a general equation of state during inflation due to Mukhanov, while the second one is based on the slow-roll hierarchy suggested by Hoffman and Turner. We find that, remarkably, the two approaches are equivalent from the observational viewpoint, as they single out the same areas in the parameter space, and agree with the inflationary attractors where successful inflation occurs. Rephrased in terms of the familiar picture of a slowly rolling, canonically normalized scalar field, the resulting inflaton excursions in these two approaches are almost identical. Furthermore, once the Galactic dust polarization data from Planck are included in the numerical fits, inflaton excursions can safely take sub-Planckian values.
Address [Boubekeur, Lotfi; Mena, Olga; Ramirez, Hector] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000353138800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2196
Permanent link to this record
 

 
Author Karagiannakis, N.; Lazarides, G.; Pallis, C.
Title Probing the hyperbolic branch/focus point region of the constrained minimal supersymmetric standard model with generalized Yukawa quasiunification Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue (down) 8 Pages 085018 - 15pp
Keywords
Abstract We analyze the parametric space of the constrained minimal supersymmetric standard model with μ> 0 supplemented by a generalized asymptotic Yukawa coupling quasiunification condition which yields acceptable masses for the fermions of the third family. We impose constraints from the cold dark matter abundance in the Universe and its direct-detection experiments, the B physics, as well as the masses of the sparticles and the lightest neutral CP-even Higgs boson. Fixing the mass of the latter to its central value from the LHC and taking 40 less than or similar to tan beta less than or similar to 50, we find a relatively wide allowed parameter space with -11 less than or similar to A(0)/M-1/2 less than or similar to 15 and a mass of the lightest sparticle in the range (0.09-1.1) TeV. This sparticle is possibly detectable by the present cold dark matter direct search experiments. The required fine-tuning for the electroweak symmetry breaking is much milder than the one needed in the neutralino-stau coannihilation region of the same model.
Address [Karagiannakis, N.; Lazarides, G.] Aristotle Univ Thessaloniki, Fac Engn, Sch Elect & Comp Engn, Thessaloniki 54124, Greece, Email: nikar@auth.gr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000362901400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2417
Permanent link to this record