|   | 
Details
   web
Records
Author NEXT Collaboration (Novella, P. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue (up) 9 Pages 190 - 35pp
Keywords Dark Matter and Double Beta Decay (experiments); Rare Decay
Abstract The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in Xe-136, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterr & aacute;neo de Canfranc. Achieving an energy resolution of 1% FWHM at 2.6 MeV and further background rejection by means of the topology of the reconstructed tracks, NEXT-White has been exploited beyond its original goals in order to perform a neu-trinoless double beta decay search. The analysis considers the combination of 271.6 days of Xe-136-enriched data and 208.9 days of 136Xe-depleted data. A detailed background mod-eling and measurement has been developed, ensuring the time stability of the radiogenic and cosmogenic contributions across both data samples. Limits to the neutrinoless mode are obtained in two alternative analyses: a background-model-dependent approach and a novel direct background-subtraction technique, offering results with small dependence on the background model assumptions. With a fiducial mass of only 3.50 +/- 0.01 kg of Xe-136-enriched xenon, 90% C.L. lower limits to the neutrinoless double beta decay are found in the T-1/2(0 nu) > 5.5x10(23) -1.3x10(24) yr range, depending on the method. The presented techniques stand as a pro of-of-concept for the searches to be implemented with larger NEXT detectors.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA, Email: pau.novella@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001085073500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5798
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Ichiki, K.
Title 21 cm forest constraints on primordial black holes Type Journal Article
Year 2023 Publication Publications of the Astronomical Society of Japan Abbreviated Journal Publ. Astron. Soc. Jpn.
Volume 75 Issue (up) SP1 Pages S33-S49
Keywords dark matter; radio lines: ISM
Abstract Primordial black holes (PBHs) as part of the dark matter (DM) would modify the evolution of large-scale structures and the thermal history of the universe. Future 21 cm forest observations, sensitive to small scales and the thermal state of the intergalactic medium (IGM), could probe the existence of such PBHs. In this article, we show that the shot noise isocurvature mode on small scales induced by the presence of PBHs can enhance the amount of low-mass halos, or minihalos, and thus, the number of 21 cm absorption lines. However, if the mass of PBHs is as large as M-PBH greater than or similar to 10 M-circle dot, with an abundant enough fraction of PBHs as DM, f(PBH), the IGM heating due to accretion on to the PBHs counteracts the enhancement due to the isocurvature mode, reducing the number of absorption lines instead. The concurrence of both effects imprints distinctive signatures on the number of absorbers, allowing the abundance of PBHs to be bound. We compute the prospects for constraining PBHs with future 21 cm forest observations, finding achievable competitive upper limits on the abundance as low as f(PBH) similar to 10(-3) at M-PBH = 100 M-circle dot, or even lower at larger masses, in regions of the parameter space unexplored by current probes. The impact of astrophysical X-ray sources on the IGM temperature is also studied, which could potentially weaken the bounds.
Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: ichiki@a.phys.nagoya-u.ac.jp
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6264 ISBN Medium
Area Expedition Conference
Notes WOS:000768441900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5168
Permanent link to this record