|   | 
Details
   web
Records
Author Bertolini, S.; Di Luzio, L.; Malinsky, M.
Title Minimal flipped SO(10) x U(1) supersymmetric Higgs model Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue (up) 3 Pages 035002 - 28pp
Keywords
Abstract We investigate the conditions on the Higgs sector that allow supersymmetric SO(10) grand unified theories to break spontaneously to the standard electroweak model at the renormalizable level. If one considers Higgs representations of dimension up to the adjoint, a supersymmetric standard model vacuum requires, in most cases, the presence of nonrenormalizable operators. The active role of Planck-induced nonrenormalizable operators in the breaking of the gauge symmetry introduces a hierarchy in the mass spectrum at the grand unified theory scale that may be an issue for gauge unification and proton decay. We show that the minimal Higgs scenario that allows for a renormalizable breaking to the standard model is obtained by considering flipped SO(10) circle times U(1) with one adjoint (45(H)) and two pairs of 16(H) circle plus (16) over bar (H) Higgs representations. We consider a nonanomalous matter content and discuss the embedding of the model in an E-6 grand unified scenario just above the flipped SO(10) scale.
Address [Bertolini, Stefano; Di Luzio, Luca] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy, Email: bertolin@sissa.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286883700007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 565
Permanent link to this record
 

 
Author Barenboim, G.; Rasero, J.
Title Baryogenesis from a right-handed neutrino condensate Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue (up) 3 Pages 097 - 15pp
Keywords Cosmology of Theories beyond the SM; Neutrino Physics
Abstract We show that the baryon asymmetry of the Universe can be generated by a strongly coupled right handed neutrino condensate which also drives inflation. The resulting model has only a small number of parameters, which completely determine not only the baryon asymmetry of the Universe and the mass of the right handed neutrino but also the inflationary phase. This feature allows us to make predictions that will be tested by current and planned experiments. As compared to the usual approach our dynamical framework is both economical and predictive.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295300025 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 622
Permanent link to this record
 

 
Author Gomez Dumm, D.; Noguera, S.; Scoccola, N.N.
Title Pion radiative weak decays in nonlocal chiral quark models Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 698 Issue (up) 3 Pages 236-242
Keywords Nonlocal quark models; Pion radiative weak decays
Abstract We analyze the radiative pion decay pi(+) -> e(+) nu(e)gamma within nonlocal chiral quark models that include wave function renormalization. In this framework we calculate the vector and axial-vector form factors F-V and F-A at q(2) = 0 – where q(2) is the e(+) nu(e) squared invariant mass – and the slope a of F-V (q(2)) at q(2) -> 0. The calculations are carried out considering different nonlocal form factors, in particular those taken from lattice QCD evaluations, showing a reasonable agreement with the corresponding experimental data. The comparison of our results with those obtained in the (local) NJL model and the relation of F-V and a with the form factor in pi(0) -> gamma*gamma decays are discussed.
Address [Gomez Dumm, D.] Univ Nacl La Plata, CONICET, Dept Fis, IFLP, RA-1900 La Plata, Buenos Aires, Argentina, Email: dumm@fisica.unlp.edu.ar
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000289543700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 609
Permanent link to this record
 

 
Author Bandos, I.A.; de Azcarraga, J.A.; Meliveo, C.
Title Extended supersymmetry in massless conformal higher spin theory Type Journal Article
Year 2011 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 853 Issue (up) 3 Pages 760-776
Keywords Higher spin theory; Conformal field theory; N-extended tensorial superspaces; Superfield theory
Abstract We propose superfield equations in tensorial N-extended superspaces to describe the N = 2,4,8 supersymmetric generalizations of free conformal higher spin theories. These can be obtained by quantizing a superparticle model in N-extended tensorial superspace. The N-extended higher spin supermultiplets just contain scalar and 'spinor' fields in tensorial space so that, in contrast with the standard (super)space approach, no nontrivial generalizations of the Maxwell or Einstein equations to tensorial space appear when N > 2. For N = 4,8, the higher spin-tensorial components of the extended tensorial superfields are expressed through additional scalar and spinor fields in tensorial space which obey the same free higher spin equations, but that are axion-like in the sense that they possess Peccei-Quinn-like symmetries.
Address [de Azcarraga, JA] CSIC UVEG, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: azcarrag@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000295955100008 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 781
Permanent link to this record
 

 
Author Heinze, M.; Malinsky, M.
Title Flavor structure of supersymmetric SO(10) GUTs with extended matter sector Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue (up) 3 Pages 035018 - 16pp
Keywords
Abstract We discuss in detail the flavor structure of the supersymmetric SOd(10) grand unified models with the three traditional 16-dimensional matter spinors mixed with a set of extra ten-dimensional vector multiplets which can provide the desired sensitivity of the standard model matter spectrum to the grand unified theory symmetry breakdown at the renormalizable level. We put the qualitative argument that a successful fit of the quark and lepton data requires an active participation of more than a single vector matter multiplet on a firm, quantitative ground. We find that the strict no-go obtained for the fits of the charged-sector observables in case of a single active matter 10 is relaxed if a second vector multiplet is added to the matter sector and excellent, though nontrivial, fits can be devised. Exploiting the unique calculable part of the neutrino mass matrix governed by the SUd(2)(L) triplet in the 54-dimensional Higgs multiplet, a pair of genuine predictions of the current setting is identified: a nonzero value of the leptonic 1-3 mixing close to the current 90% C.L. limit and a small leptonic Dirac CP phase are strongly preferred by all solutions with the global-fit chi(2) values below 50.
Address [Heinze, Martin; Malinsky, Michal] AlbaNova Univ Ctr, Royal Inst Technol KTH, Dept Theoret Phys, Sch Engn Sci, SE-10691 Stockholm, Sweden, Email: mheinze@kth.se
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000287655300010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 566
Permanent link to this record