|   | 
Details
   web
Records
Author Jeong, Y.S.; Palomares-Ruiz, S.; Reno, M.H.; Sarcevic, I.
Title Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue (up) 6 Pages 019 - 43pp
Keywords cosmological neutrinos; neutrino theory; supernova neutrinos
Abstract Sterile neutrinos with mass in the eV-scale and large mixings of order theta(0) similar or equal to 0.1 could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson phi. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, M-phi, and its coupling to sterile neutrinos, g(s). Then, we explore how to probe part of the allowed parameter space of this particular model with future observations of the diffuse supernova neutrino background by the Hyper-Kamiokande and DUNE detectors. For M-phi similar to 5 – 10 keV and g(s) similar to 10-(4) – 10(-2), as allowed by cosmological constraints, we find that interactions of diffuse supernova neutrinos with relic sterile neutrinos on their way to the Earth would result in significant dips in the neutrino spectrum which would produce unique features in the event spectra observed in these detectors.
Address [Jeong, Yu Seon; Sarcevic, Ina] Univ Arizona, Dept Phys, 1118 E 4th St, Tucson, AZ 85704 USA, Email: ysjeong@email.arizona.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000434991300006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3613
Permanent link to this record
 

 
Author Casas, J.A.; Gomez Vargas, G.A.; Moreno, J.M.; Quilis, J.; Ruiz de Austri, R.
Title Extended Higgs-portal dark matter and the Fermi-LAT Galactic Center Excess Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue (up) 6 Pages 031 - 16pp
Keywords dark matter theory; dark matter experiments
Abstract In the present work, we show that the Galactic Center Excess (GCE) emission, as recently updated by the Fermi-LAT Collaboration, could be explained by a mixture of Fermi bubbles-like emission plus dark matter (DM) annihilation, in the context of a scalar-singlet Higgs portal scenario (SHP). In fact, the standard SHP, where the DM particle, S, only has renormalizable interactions with the Higgs, is non-operational due to strong constraints, especially from DM direct detection limits. Thus we consider the most economical extension, called ESHP (for extended SHP), which consists solely in the addition of a second (more massive) scalar singlet in the dark sector. The second scalar can be integrated-out, leaving a standard SHP plus a dimension-6 operator. Mainly, this model has only two relevant parameters (the DM mass and the coupling of the dim-6 operator). DM annihilation occurs mainly into two Higgs bosons, SS -> hh. We demonstrate that, despite its economy, the ESHP model provides an excellent fit to the GCE (with p-value similar to 0.6-0.7) for very reasonable values of the parameters, in particular, ms similar or equal to 130 GeV. This agreement of the DM candidate to the GCE properties does not clash with other observables and keep the S – particle relic density at the accepted value for the DM content in the universe.
Address [Casas, J. A.; Moreno, J. M.; Quilis, J.] Univ Autonoma Madrid, Inst Fis Teor, CSIC, E-28049 Madrid, Spain, Email: j.alberto.casas@gmail.com;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000435710700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3626
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J.
Title Variations in fundamental constants at the cosmic dawn Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue (up) 6 Pages 026 - 25pp
Keywords cosmology of theories beyond the SM; particle physics – cosmology connection; reionization
Abstract The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-a forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21 cm transition of neutral hydrogen during the epochs of reionization and the cosmic dawn (and potentially the tail end of the dark ages); being inherently sensitive to electromagnetic phenomena, these experiments will offer a unique perspective on space-time variations of the fine-structure constant and the electron mass. We show here that large variations in these fundamental constants would produce features on the 21 cm power spectrum that may be distinguishable from astrophysical uncertainties. Furthermore, we forecast the sensitivity for the Square Kilometer Array, and show that the 21 cm power spectrum may be able to constrain variations at the level of O(10(-3)).
Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000551875400049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4473
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Search for secluded dark matter towards the Galactic Centre with the ANTARES neutrino telescope Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue (up) 6 Pages 028 - 20pp
Keywords dark matter experiments; neutrino experiments; ultra high energy photons and neutrinos
Abstract Searches for dark matter (DM) have not provided any solid evidence for the existence of weakly interacting massive particles in the GeV-TeV mass range. Coincidentally, the scale of new physics is being pushed by collider searches well beyond the TeV domain. This situation strongly motivates the exploration of DM masses much larger than a TeV. Secluded scenarios contain a natural way around the unitarity bound on the DM mass, via the early matter domination induced by the mediator of its interactions with the Standard Model. High-energy neutrinos constitute one of the very few direct accesses to energy scales above a few TeV. An indirect search for secluded DM signals has been performed with the ANTARES neutrino telescope using data from 2007 to 2015. Upper limits on the DM annihilation cross section for DM masses up to 6 PeV are presented and discussed.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000823148400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5284
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Search for solar atmospheric neutrinos with the ANTARES neutrino telescope Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue (up) 6 Pages 018 - 17pp
Keywords neutrino detectors; neutrino experiments; solar and atmospheric neutrinos; dark matter experiments
Abstract Solar Atmospheric Neutrinos (SA nu s) are produced by the interaction of cosmic rays with the solar medium. The detection of SA nu s would provide useful information on the composition of primary cosmic rays as well as the solar density. These neutrinos represent an irreducible source of background for indirect searches for dark matter towards the Sun and the measurement of their flux would allow for a better assessment of the uncertainties related to these searches. In this paper we report on the analysis performed, based on an unbinned likelihood maximisation, to search for SA nu s with the ANTARES neutrino telescope. After analysing the data collected over 11 years, no evidence for a solar atmospheric neutrino signal has been found. An upper limit at 90% confidence level on the flux of solar atmospheric neutrinos has been obtained, equal to 7x10(-11) [TeV-1 cm(-2) s(-1)] b at E-nu = 1 TeV for the reference cosmic ray model assumed.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000833413700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5319
Permanent link to this record