toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Romeri, V.; Papoulias, D.K.; Ternes, C.A. url  doi
openurl 
  Title Light vector mediators at direct detection experiments Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue (up) 5 Pages 165 - 22pp  
  Keywords New Gauge Interactions; New Light Particles; Specific BSM Phenomenology  
  Abstract Solar neutrinos induce elastic neutrino-electron scattering in dark matter direct detection experiments, resulting in detectable event rates at current facilities. We analyze recent data from the XENONnT, LUX-ZEPLIN, and PandaX-4T experiments and we derive stringent constraints on several U(1) ' extensions of the Standard Model, accommodating new neutrino-electron interactions. We provide bounds on the relevant coupling and mass of light vector mediators for a variety of models, including the anomaly-free B – L model, lepton flavor-dependent interactions like L alpha – L beta , B – 2L e – L mu,tau , B – 3L alpha , and B + 2L μ+ 2L tau models. We compare our results with other limits obtained in the literature from both terrestrial and astrophysical experiments. Finally, we present forecasts for improving current bounds with a future experiment like DARWIN.  
  Address [De Romeri, Valentina] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001224185000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6132  
Permanent link to this record
 

 
Author Bout, R.; Busto, J.; Cecchini, V.; Charpentier, P.; Chapellier, M.; Dastgheibi-Fard, A.; Druillole, F.; Jollet, C.; Hellmuth, P.; Gros, M.; Lautridou, P.; Meregaglia, A.; Navick, X.F.; Piquemal, F.; Roche, M.; Thomas, B. url  doi
openurl 
  Title Perspectives of a single-anode cylindrical chamber operating in ionization mode and high gas pressure Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue (up) 5 Pages 512 - 14pp  
  Keywords  
  Abstract As part of the R2D2 (Rare Decays with Radial Detector) R &D, the use of a gas detector with a spherical or cylindrical cathode, equipped with a single anode and operating at high pressure, was studied for the search of rare phenomena such as neutrinoless double-beta decay. The presented measurements were obtained with a cylindrical detector, covering gas pressures ranging from 1 to 10 bar in argon and 1 to 6 bar in xenon, using both a point-like source of 210 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{210} $$\end{document} Po (5.3 MeV alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} ) and a diffuse source of 222 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{222}$$\end{document} Rn (5.5 MeV alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} ). Analysis and interpretation of the data were developed using the anodic current waveform. Similar detection performances were achieved with both gases, and comparable energy resolutions were measured with both sources. As long as the purity of the gas was sufficient, no significant degradation of the measured energy was observed by increasing the pressure. At the highest operating pressure, an energy resolution better than 1.5% full-width at half-maximum (FWHM) was obtained for both gaseous media, although optimal noise conditions were not reached.  
  Address [Bouet, R.; Cecchini, V.; Charpentier, P.; Druillole, F.; Jollet, C.; Hellmuth, P.; Meregaglia, A.; Piquemal, F.; Roche, M.; Thomas, B.] Univ Bordeaux, CNRS IN2P3, LP2I Bordeaux, F-33175 Gradignan, France, Email: pascal.lautridou@subatech.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001227190500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6133  
Permanent link to this record
 

 
Author NEXT Collaboration (Haefner, J. et al); Carcel, S.; Carrion, J.V.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Soto-Oton, J.; Uson, A. url  doi
openurl 
  Title Demonstration of event position reconstruction based on diffusion in the NEXT-white detector Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue (up) 5 Pages 518 - 13pp  
  Keywords  
  Abstract Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from Kr-83m calibration electron captures (E similar to 45 keV), the position of origin of low-energy events is determined to 2 cm precision with bias <1 mm. A convolutional neural network approach is then used to quantify diffusion for longer tracks (E >= 1.5 MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q(beta beta) in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation.  
  Address [Haefner, J.; Contreras, T.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: karen.navarro@uta.edu  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001228898800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6138  
Permanent link to this record
 

 
Author Irles, A.; Marquez, J.P.; Pöschl, R.; Richard, F.; Saibel, A.; Yamamoto, H.; Yamatsu, N. url  doi
openurl 
  Title Probing gauge-Higgs unification models at the ILC with quark-antiquark forward-backward asymmetry at center-of-mass energies above the Z mass Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue (up) 5 Pages 537 - 17pp  
  Keywords  
  Abstract The International Linear Collider (ILC) will allow the precise study of e(-)e(+)-> q (q) over bar interactions at different center-of-mass energies from the Z-pole to 1 TeV. In this paper, we discuss the experimental prospects for measuring differential observables in e(-)e(+)-> b (b) over bar and e(-)e(+) -> c (c) over bar at the ILC baseline energies, 250 and 500 GeV. The study is based on full simulation and reconstruction of the International Large Detector (ILD) concept. Two gauge-Higgs unification models predicting new high-mass resonances beyond the Standard Model are discussed. These models predict sizable deviations of the forward-backward observables at the ILC running above the Z mass and with longitudinally polarized electron and positron beams. The ability of the ILC to probe these models via high-precision measurements of the forward-backward asymmetry is discussed. Alternative scenarios at other energies and beam polarization schemes are also discussed, extrapolating the estimated uncertainties from the two baseline scenarios.  
  Address [Irles, A.; Marquez, J. P.; Saibel, A.; Yamamoto, H.] Univ Valencia, IFIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: adrian.irles@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001234571800011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6139  
Permanent link to this record
 

 
Author Martins, A.; da Mota, A.F.; Stanford, C.; Contreras, T.; Martin-Albo, J.; Kish, A.; Escobar, C.O.; Para, A.; Guenette, R. url  doi
openurl 
  Title Simple strategy for the simulation of axially symmetric large-area metasurfaces Type Journal Article
  Year 2024 Publication Journal of the Optical Society of America B Abbreviated Journal J. Opt. Soc. Am. B  
  Volume 41 Issue (up) 5 Pages 1261-1269  
  Keywords  
  Abstract Metalenses are composed of nanostructures for focusing light and have been widely explored in many exciting applications. However, their expanding dimensions pose simulation challenges. We propose a method to simulate metalenses in a timely manner using vectorial wave and ray tracing models. We sample the metalens's radial phase gradient and locally approximate the phase profile by a linear phase response. Each sampling point is modeled as a binary blazed grating, employing the chosen nanostructure, to build a transfer function set. The metalens transmission or reflection is then obtained by applying the corresponding transfer function to the incoming field on the regions surrounding each sampling point. Fourier optics is used to calculate the scattered fields under arbitrary illumination for the vectorial wave method, and a Monte Carlo algorithm is used in the ray tracing formalism. We validated our method against finite -difference time domain simulations at 632 nm, and we were able to simulate metalenses larger than 3000 wavelengths in diameter on a personal computer.  
  Address [Martins, Augusto; Guenette, Roxanne] Univ Manchester, Dept Phys, Manchester M13 9PL, England, Email: augusto.martins@york.ac.uk  
  Corporate Author Thesis  
  Publisher Optica Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0740-3224 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001237140900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6140  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva