toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Serenelli, A.; Scott, P.; Villante, F.L.; Vincent, A.C.; Asplund, M.; Basu, S.; Grevesse, N.; Pena-Garay, C. url  doi
openurl 
  Title Implications of solar wind measurements for solar models and composition Type Journal Article
  Year 2016 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 463 Issue (down) 1 Pages 2-9  
  Keywords neutrinos; Sun: abundances; Sun: helioseismology; Sun: interior  
  Abstract We critically examine recent claims of a high solar metallicity by von Steiger & Zurbuchen (2016, vSZ16) based onin situ measurements of the solar wind, rather than the standard spectroscopically inferred abundances (Asplund et al. 2009, hereafter AGSS09). We test the claim by Vagnozzi et al. (2016) that a composition based on the solar wind enables one to construct a standard solar model in agreement with helioseismological observations and thus solve the decades-old solar modelling problem. We show that, although some helioseismological observables are improved compared to models computed with spectroscopic abundances, most are in fact worse. The high abundance of refractory elements leads to an overproduction of neutrinos, with a predicted B-8 flux that is nearly twice its observed value, and Be-7 and CNO fluxes that are experimentally ruled out at high confidence. A combined likelihood analysis shows that models using the vSZ16 abundances are worse than AGSS09 despite a higher metallicity. We also present astrophysical and spectroscopic arguments showing the vSZ16 composition to be an implausible representation of the solar interior, identifying the first ionization potential effect in the outer solar atmosphere and wind as the likely culprit.  
  Address [Serenelli, Aldo] Inst Space Sci IEEC CSIC, E-08193 Barcelona, Spain, Email: aldos@ice.csic.es  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386464900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2842  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for high-energy neutrinos from bright GRBs with ANTARES Type Journal Article
  Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 469 Issue (down) 1 Pages 906-915  
  Keywords acceleration of particles; neutrinos; gamma-ray burst: individual: GRB 080916C; gamma-ray burst: individual: GRB 110918A; gamma-ray burst: individual: GRB 130427A; gamma-ray burst: individual: GRB 130505A  
  Abstract Gamma-ray bursts are thought to be sites of hadronic acceleration, thus neutrinos are expected from the decay of charged particles, produced in p gamma interactions. The methods and results of a search for muon neutrinos in the data of the ANTARES neutrino telescope from four bright GRBs (GRB 080916C, GRB 110918A, GRB 130427A and GRB 130505A) observed between 2008 and 2013 are presented. Two scenarios of the fireball model have been investigated: the internal shock scenario, leading to the production of neutrinos with energies mainly above 100 TeV, and the photospheric scenario, characterized by a low-energy component in neutrino spectra due to the assumption of neutrino production closer to the central engine. Since no neutrino events have been detected in temporal and spatial coincidence with these bursts, upper limits at 90 per cent confidence level on the expected neutrino fluxes are derived. The non-detection allows for directly constraining the bulk Lorentz factor of the jet Gamma and the baryon loading f(p).  
  Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: silvia.celli@gssi.infn.it  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402825000062 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3159  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope Type Journal Article
  Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 482 Issue (down) 1 Pages 184-193  
  Keywords acceleration of particles; neutrinos; astroparticle physics; radio continuum: transients; methods: data analysis  
  Abstract In the past decade, a new class of bright transient radio sources with millisecond duration has been discovered. The origin of these so-called fast radio bursts (FRBs) is still a mystery, despite the growing observational efforts made by various multiwavelength and multimessenger facilities. To date, many models have been proposed to explain FRBs, but neither the progenitors nor the radiative and the particle acceleration processes at work have been clearly identified. In this paper, we assess whether hadronic processes may occur in the vicinity of the FRB source. If they do, FRBs may contribute to the high-energy cosmic-ray and neutrino fluxes. A search for these hadronic signatures was carried out using the ANTARES neutrino telescope. The analysis consists in looking for high-energy neutrinos, in the TeV-PeV regime, that are spatially and temporally coincident with the detected FRBs. Most of the FRBs discovered in the period 2013-2017 were in the field of view of the ANTARES detector, which is sensitive mostly to events originating from the Southern hemisphere. From this period, 12 FRBs were selected and no coincident neutrino candidate was observed. Upper limits on the per-burst neutrino fluence were derived using a power-law spectrum, dN/DE nu proportional to E-nu(-gamma), for the incoming neutrino flux, assuming spectral indexes gamma = 1.0, 2.0, 2.5. Finally, the neutrino energy was constrained by computing the total energy radiated in neutrinos, assuming different distances for the FRBs. Constraints on the neutrino fluence and on the energy released were derived from the associated null results.  
  Address [Turpin, D.] Chinese Acad Sci, Natl Astron Observ, Key Lab Space Astron & Technol, Beijing 100101, Peoples R China, Email: dornic@cppm.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454575300014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3860  
Permanent link to this record
 

 
Author Vagnozzi, S.; Visinelli, L.; Mena, O.; Mota, D.F. url  doi
openurl 
  Title Do we have any hope of detecting scattering between dark energy and baryons through cosmology? Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 493 Issue (down) 1 Pages 1139-1152  
  Keywords cosmic background radiation; cosmological parameters; cosm logy: observations; dark energy; large-scale structure of Universe  
  Abstract We consider the possibility that dark energy and baryons might scatter off each other. The type of interaction we consider leads to a pure momentum exchange, and does not affect the background evolution of the expansion history. We parametrize this interaction in an effective way at the level of Boltzmann equations. We compute the effect of dark energy-baryon scattering on cosmological observables, focusing on the cosmic microwave background (CMB) temperature anisotropy power spectrum and the matter power spectrum. Surprisingly, we find that even huge dark energy-baryon cross-sections sigma(xb) similar to O(b), which are generically excluded by non-cosmological probes such as collider searches or precision gravity tests, only leave an insignificant imprint on the observables considered. In the case of the CMB temperature power spectrum, the only imprint consists in a sub-per cent enhancement or depletion of power (depending whether or not the dark energy equation of state lies above or below -1) at very low multipoles, which is thus swamped by cosmic variance. These effects are explained in terms of differences in how gravitational potentials decay in the presence of a dark energy-baryon scattering, which ultimately lead to an increase or decrease in the late-time integrated Sachs-Wolfe power. Even smaller related effects are imprinted on the matter power spectrum. The imprints on the CMB are not expected to be degenerate with the effects due to altering the dark energy sound speed. We conclude that, while strongly appealing, the prospects for a direct detection of dark energy through cosmology do not seem feasible when considering realistic dark energy-baryon cross-sections. As a caveat, our results hold to linear order in perturbation theory.  
  Address [Vagnozzi, Sunny] Univ Cambridge, Kat Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000518156100081 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4320  
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perucho, M.; Marti, J.M.; Laing, R.A. url  doi
openurl 
  Title On the deceleration of Fanaroff-Riley Class I jets: mass loading of magnetized jets by stellar winds Type Journal Article
  Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 500 Issue (down) 1 Pages 1512-1530  
  Keywords relativistic processes; stars: winds; outflows; galaxies: active; galaxies: jets  
  Abstract In this paper, we present steady-state relativistic magnetohydrodynamic simulations that include a mass-load term to study the process of jet deceleration. The mass load mimics the injection of a proton-electron plasma from stellar winds within the host galaxy into initially pair plasma jets, with mean stellar mass-losses ranging from 10(-14) to 10(-9) M-circle dot yr(-1). The spatial jet evolution covers similar to 500 pc from jet injection in the grid at 10 pc from the jet nozzle. Our simulations use a relativistic gas equation of state and a pressure profile for the ambient medium. We compare these simulations with previous dynamical simulations of relativistic, non-magnetized jets. Our results show that toroidal magnetic fields can prevent fast jet expansion and the subsequent embedding of further stars via magnetic tension. In this sense, magnetic fields avoid a runaway deceleration process. Furthermore, when the mass load is large enough to increase the jet density and produce fast, differential jet expansion, the conversion of magnetic energy flux into kinetic energy flux (i.e. magnetic acceleration), helps to delay the deceleration process with respect to non-magnetized jets. We conclude that the typical stellar population in elliptical galaxies cannot explain jet deceleration in classical Fanaroff-Riley type I radio galaxies. However, we observe a significant change in the jet composition, thermodynamical parameters, and energy dissipation along its evolution, even for moderate values of the mass load.  
  Address [Angles-Castillo, Andreu; Perucho, Manel; Maria Marti, Jose] Univ Valencia, Dept Astron & Astrofis, C Dr Moline 50, E-46100 Valencia, Spain, Email: manel.perucho@uv.es  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000599134600112 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4644  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva