toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wagner, C.; Verde, L.; Boubekeur, L. url  doi
openurl 
  Title N-body simulations with generic non-Gaussian initial conditions I: power spectrum and halo mass function Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue (up) 10 Pages 022 - 24pp  
  Keywords power spectrum; cosmological simulations; initial conditions and eternal universe; galaxy clusters  
  Abstract We address the issue of setting up generic non-Gaussian initial conditions for N-body simulations. We consider inflationary-motivated primordial non-Gaussianity where the perturbations in the Bardeen potential are given by a dominant Gaussian part plus a non-Gaussian part specified by its bispectrum. The approach we explore here is suitable for any bispectrum, i.e. it does not have to be of the so-called separable or factorizable form. The procedure of generating a non-Gaussian field with a given bispectrum (and a given power spectrum for the Gaussian component) is not univocal, and care must be taken so that higher-order corrections do not leave a too large signature on the power spectrum. This is so far a limiting factor of our approach. We then run N-body simulations for the most popular inflationary-motivated non-Gaussian shapes. The halo mass function and the non-linear power spectrum agree with theoretical analytical approximations proposed in the literature, even if they were so far developed and tested only for a particular shape (the local one). We plan to make the simulations outputs available to the community via the non-Gaussian simulations comparison project web site http://icc.ub.edu/similar to liciaverde/NGSCP.html.  
  Address [Wagner, Christian; Verde, Licia] Univ Barcelona, ICCUB IEEC, E-08028 Barcelona, Spain, Email: cwagner@icc.ub.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283577600013 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 339  
Permanent link to this record
 

 
Author Olmo, G.J. url  doi
openurl 
  Title Palatini actions and quantum gravity phenomenology Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue (up) 10 Pages 018 - 15pp  
  Keywords quantum gravity phenomenology; cosmic singularity  
  Abstract We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.  
  Address [Olmo, GJ] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296767600018 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 816  
Permanent link to this record
 

 
Author Bernal, N.; Colucci, S.; Josse-Michaux, F.X.; Racker, J.; Ubaldi, L. url  doi
openurl 
  Title On baryogenesis from dark matter annihilation Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue (up) 10 Pages 035 - 30pp  
  Keywords dark matter theory; baryon asymmetry; leptogenesis  
  Abstract We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B – L. In addition, one of the models we propose yields some connection to neutrino masses.  
  Address [Bernal, Nicolas] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, Brazil, Email: nicolas@ift.unesp.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326979500035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1659  
Permanent link to this record
 

 
Author Lineros, R.A.; Pereira dos Santos, F.A. url  doi
openurl 
  Title Inert scalar dark matter in an extra dimension inspired model Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue (up) 10 Pages 059 - 17pp  
  Keywords dark matter theory; extra dimensions; particle physics – cosmology connection  
  Abstract In this paper we analyze a dark matter model inspired by theories with extra dimensions. The dark matter candidate corresponds to the first Kaluza-Klein mode of an real scalar added to the Standard Model. The tower of new particles enriches the calculation of the relic abundance. For large mass splitting, the model converges to the predictions of the inert singlet dark matter model. For nearly degenerate mass spectrum, coannihilations increase the cross-sections used for direct and indirect dark matter searches. Moreover, the Kaluza-Klein zero mode can mix with the SM higgs and further constraints can be applied.  
  Address [Lineros, R. A.; Pereira dos Santos, F. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: rlineros@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345990800060 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2042  
Permanent link to this record
 

 
Author Pallis, C. url  doi
openurl 
  Title Reconciling induced-gravity inflation in supergravity with the Planck 2013 & BICEP2 results Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue (up) 10 Pages 058 - 18pp  
  Keywords supersymmetry and cosmology; inflation; modified gravity  
  Abstract We generalize the embedding of induced-gravity inflation beyond the no-scale Supergravity presented in ref. [1] employing two gauge singlet chiral superfields, a superpotential uniquely determined by applying a continuous R and a discrete Z(n) symmetries, and a logarithmic Kahler potential including all the allowed terms up to fourth order in powers of the various fields. We show that, increasing slightly the prefactor (-3) encountered in the adopted Kahler potential, an efficient enhancement of the resulting tensor-to-scalar ratio can be achieved rendering the predictions of the model consistent with the recent BICEP2 results, even with subplanckian excursions of the original inflaton field. The remaining inflationary observables can become compatible with the data by mildly tuning the coefficient involved in the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field. The inflaton mass is predicted to be close to 10(14) GeV.  
  Address [Pallis, C.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: kpallis@auth.gr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345990800059 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2043  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva