toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Candela-Juan, C.; Niatsetski, Y.; van der Laarse, R.; Granero, D.; Ballester, F.; Perez-Calatayud, J.; Vijande, J. doi  openurl
  Title Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 43 Issue (up) 4 Pages 1639-1648  
  Keywords skin applicator; Valencia applicator; HDR brachytherapy; dosimetry; Monte Carlo  
  Abstract Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a Ir-192 source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times. Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a 192Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth-dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. Conclusions: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.  
  Address [Candela-Juan, C.; Perez-Calatayud, J.] La Fe Univ & Polytech Hosp, Dept Radiat Oncol, Valencia 46026, Spain, Email: ccanjuan@gmail.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373711000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2620  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Vijande, J.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title Transit dose comparisons for Co-60 and Ir-192 HDR sources Type Journal Article
  Year 2016 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 36 Issue (up) 4 Pages 858-864  
  Keywords Monte Carlo; dosimetry; HDR brachytherapy; transit dose  
  Abstract The goal of this study is to evaluate the ambient dose due to the transit of high dose rate (HDR) Co-60 sources along a transfer tube as compared to Ir-192 ones in a realistic clinical scenario. This goal is accomplished by evaluating air-kerma differences with Monte Carlo calculations using PENELOPE2011. Scatter from both the afterloader and the patient was not taken into account. Two sources, mHDR-v2 and Flexisource Co-60, (Elekta Brachytherapy, Veenendaal, the Netherlands) have been considered. These sources were simulated within a standard transfer tube located in an infinite air phantom. The movement of the source was included by displacing their positions along the connecting tube from z = – 75 cm to z = + 75 cm and combining them. Since modern afterloaders like Flexitron (Elekta) or Saginova (BEBIG GmbH) are able to use equally 192Ir and 60Co sources, it was assumed that both sources are displaced with equal speed. Typical HDR source activity content values were provided by the manufacturer. 2D distributions were obtained with type-A uncertainties (k = 2) less than 0.01%. From those, the air-kerma ratio Co-60/Ir-192 was evaluated weighted by their corresponding typical activities. It was found that it varies slowly with distance (less than 10% variation at 75 cm) but strongly in time due to the shorter half-life of the 192Ir (73.83 d). The maximum ratio is located close to the tube. It reaches a value of 0.57 when the typical activity of the sources at the time when they were installed by the vendor was used. Such ratio increases up to 1.28 at the end of the recommended working life (90 d) of the Ir-192 source. Co-60/Ir-192 air-kerma ratios are almost constant (0.51-0.57) in the vicinity of the source-tube with recent installed sources. Nevertheless, air-kerma ratios increase rapidly (1.15-1.29) whenever the Ir-192 is approaching the end of its life. In case of a medical event requiring the medical staff to access the treatment room, these ratios indicate that the dosimetric impact on the medical team will be lower, with a few exceptions, in the case of Co-60-based HDR brachytherapy as compared to Ir-192-based one when typical air-kerma strength values are considered.  
  Address [Gimenez-Alventosa, Vicent; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386436100002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2839  
Permanent link to this record
 

 
Author Granero, D.; Candela-Juan, C.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Jacob, D.; Mourtada, F. doi  openurl
  Title Technical Note: Dosimetry of Leipzig and Valencia applicators without the plastic cap Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 43 Issue (up) 5 Pages 2087 - 4pp  
  Keywords Leipzig applicators; Valencia applicators; skin brachytherapy; Monte Carlo; dosimetry  
  Abstract Purpose: High dose rate (HDR) brachytherapy for treatment of small skin lesions using the Leipzig and Valencia applicators is a widely used technique. These applicators are equipped with an attachable plastic cap to be placed during fraction delivery to ensure electronic equilibrium and to prevent secondary electrons from reaching the skin surface. The purpose of this study is to report on the dosimetric impact of the cap being absent during HDR fraction delivery, which has not been explored previously in the literature. Methods: GEANT4 Monte Carlo simulations (version 10.0) have been performed for the Leipzig and Valencia applicators with and without the plastic cap. In order to validate the Monte Carlo simulations, experimental measurements using radiochromic films have been done. Results: Dose absorbed within 1 mm of the skin surface increases by a factor of 1500% for the Leipzig applicators and of 180% for the Valencia applicators. Deeper than 1 mm, the overdosage flattens up to a 10% increase. Conclusions: Differences of treating with or without the plastic cap are significant. Users must check always that the plastic cap is in place before any treatment in order to avoid overdosage of the skin. Prior to skin HDR fraction delivery, the timeout checklist should include verification of the cap placement. (C) 2016 American Association of Physicists in Medicine.  
  Address [Granero, D.] Hosp Gen Univ, Dept Radiat Phys, ERESA, Valencia 46014, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000378924200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2753  
Permanent link to this record
 

 
Author Vijande, J.; Ballester, F.; Ouhib, Z.; Granero, D.; Pujades-Claumarchirant, M.C.; Perez-Calatayud, J. doi  openurl
  Title Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy Type Journal Article
  Year 2012 Publication Brachytherapy Abbreviated Journal Brachytherapy  
  Volume 11 Issue (up) 6 Pages 528-535  
  Keywords Ir-192; Brachytherapy; Dosimetry; Penelope2008; Freiburg flap  
  Abstract PURPOSE: The purpose of this work was to evaluate whether the delivered dose to the skin surface and at the prescription depth when using a Freiburg flap applicator is in agreement with the one predicted by the treatment planning system (TPS) using the TG-43 dose-calculation formalism. METHODS AND MATERIALS: Monte Carlo (MC) simulations and radiochromic film measurements have been performed to obtain dose distributions with the source located at the center of one of the spheres and between two spheres. Primary and scatter dose contributions were evaluated to understand the role played by the scatter component. A standard treatment plan was generated using MC- and TG-43-based TPS applying the superposition principle. RESULTS: The MC model has been validated by performing additional simulations in the same conditions but transforming air and Freiburg flap materials into water to match TG-43 parameters. Both dose distributions differ less than 1%. Scatter defect compared with TG-43 data is up to 15% when the source is located at the center of the sphere and up to 25% when the source is between two spheres. Maximum deviations between TPS- and MC-based distributions are of 5%. CONCLUSIONS: The deviations in the TG-43-based dose distributions for a standard treatment plan with respect to the MC dose distribution calculated taking into account the composition and shape of the applicator and the surrounding air are lower than 5%. Therefore, this study supports the validity of the TPS used in clinical practice. (C) 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.  
  Address [Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1538-4721 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310863700018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1227  
Permanent link to this record
 

 
Author Candela-Juan, C.; Vijande, J.; Garcia-Martinez, T.; Niatsetski, Y.; Nauta, G.; Schuurman, J.; Ouhib, Z.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry Type Journal Article
  Year 2015 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 42 Issue (up) 8 Pages 4954-4964  
  Keywords x-ray beams; electronic brachytherapy; surface applicators; dosimetry; uncertainty  
  Abstract Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate of the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%-2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers, differ by less than 1.1% for any applicator size when compared to the output factors that were measured with the A20 chamber. Conclusions: Measurements using both dosimetric protocols are consistent, once the overall uncertainties are considered. There is also consistency between measurements performed with both chambers calibrated in air. Both the T34013 and A20 chambers have negligible stem effect. Any x-ray surface brachytherapy system, including Esteya, can be characterized using either one of these calibration protocols and ionization chambers. Having less correction factors, lower uncertainty, and based on measurements, performed in closer to clinical conditions, the TRS-398 protocol seems to be the preferred option.  
  Address [Candela-Juan, C.; Perez-Calatayud, J.] La Fe Univ, Dept Radiat Oncol, Valencia 46026, Spain, Email: ccanjuan@gmail.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358933000051 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2323  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva