toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Valdes-Cortez, C.; Ballester, F.; Vijande, J.; Gimenez, V.; Gimenez-Alventosa, V.; Perez-Calatayud, J.; Niatsetski, Y.; Andreo, P. doi  openurl
  Title Depth-dose measurement corrections for the surface electronic brachytherapy beams of an Esteya(R) unit: a Monte Carlo study Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue (up) 24 Pages 245026 - 12pp  
  Keywords electronic brachytherapy; eBT; dosimetry; ionization chamber; Monte Carlo  
  Abstract Three different correction factors for measurements with the parallel-plate ionization chamber PTW T34013 on the Esteya electronic brachytherapy unit have been investigated. This chamber type is recommended by AAPM TG-253 for depth-dose measurements in the 69.5 kV x-ray beam generated by the Esteya unit. Monte Carlo simulations using the PENELOPE-2018 system were performed to determine the absorbed dose deposited in water and in the chamber sensitive volume at different depths with a Type A uncertainty smaller than 0.1%. Chamber-to-chamber differences have been explored performing measurements using three different chambers. The range of conical applicators available, from 10 to 30 mm in diameter, has been explored. Using a depth-independent global chamber perturbation correction factor without a shift of the effective point of measurement yielded differences between the absorbed dose to water and the corrected absorbed dose in the sensitive volume of the chamber of up to 1% and 0.6% for the 10 mm and 30 mm applicators, respectively. Calculations using a depth-dependent perturbation factor, including or excluding a shift of the effective point of measurement, resulted in depth-dose differences of about +/- 0.5% or less for both applicators. The smallest depth-dose differences were obtained when a shift of the effective point of measurement was implemented, being displaced 0.4 mm towards the center of the sensitive volume of the chamber. The correction factors were obtained with combined uncertainties of 0.4% (k = 2). Uncertainties due to chamber-to-chamber differences are found to be lower than 2%. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each electronic brachytherapy device and ionization chamber used for its dosimetry.  
  Address [Valdes-Cortez, Christian; Ballester, Facundo; Vijande, Javier] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: cvalcort@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000618031500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4708  
Permanent link to this record
 

 
Author Hueso-Gonzalez, F.; Ballester, F.; Perez-Calatayud, J.; Siebert, F.A.; Vijande, J. doi  openurl
  Title Towards clinical application of RayStretch for heterogeneity corrections in LDR permanent I-125 prostate brachytherapy Type Journal Article
  Year 2017 Publication Brachytherapy Abbreviated Journal Brachytherapy  
  Volume 16 Issue (up) 3 Pages 616-623  
  Keywords Brachytherapy; Low-dose rate; Heterogeneities; Prostate; Calcifications; Dosimetry  
  Abstract PURPOSE: RayStretch is a simple algorithm proposed for heterogeneity corrections in low-dose-rate brachytherapy. It is built on top of TG-43 consensus data, and it has been validated with Monte Carlo (MC) simulations. In this study, we take a real clinical prostate implant with 71 1251 seeds as reference and we apply RayStretch to analyze its performance in worst-case scenarios. METHODS AND MATERIALS: To do so, we design two cases where large calcifications are located in the prostate lobules. RayStretch resilience under various calcification density values is also explored. Comparisons against MC calculations are performed. RESULTS: Dose volume histogram related parameters like prostate D-90, rectum D-2cc, or urethra D-10 obtained with RayStretch agree within a few percent with the detailed MC results for all cases considered. CONCLUSIONS: The robustness and compatibility of RayStretch with commercial treatment planning systems indicate its applicability in clinical practice for dosimetric corrections in prostate calcifications. Its use during intraoperative ultrasound planning is foreseen.  
  Address [Hueso-Gonzalez, Fernando] Target Systemelekt GmbH, Wuppertal, Germany, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1538-4721 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402231600019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3151  
Permanent link to this record
 

 
Author Ballester, F.; Granero, D.; Perez-Calatayud, J.; Venselaar, J.L.M.; Rivard, M.J. doi  openurl
  Title Study of encapsulated Tm-170 sources for their potential use in brachytherapy Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 37 Issue (up) 4 Pages 1629-1637  
  Keywords brachytherapy; cancer; dosimetry; prosthetics; radioisotopes; thulium  
  Abstract Methods: The authors have assumed a theoretical Tm-170 cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR Ir-192 brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron Tm-170 spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of Tm-170 encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a Tm-170 source were compared to those for Ir-192 and Yb-169 for the same contained activity. Results: Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the emitted gammas and characteristic x rays. Moreover, the electron spectrum contribution to the dose was significant up to 4 mm from the source center compared to the photon contribution. The dose-rate constant Lambda of the cylindrical source was 1.23 cGy h(-1) U-1. The behavior of the radial dose function showed promise for applications in brachytherapy. Due to the electron spectrum, the anisotropy was large for r < 6 mm. Variations in manufacturing tolerances did not significantly influence the final dosimetry data when expressed in cGy h(-1) U-1. For typical capsule dimensions, maximum reference dose rates of about 0.2, 10, and 2 Gy min(-1) would then be obtained for Tm-170, Ir-192, and Yb-169, respectively, resulting in treatment times greater than those for HDR Ir-192 brachytherapy. Conclusions: The dosimetric characteristics of source designs exploiting the low photon energy of Tm-170 were studied for potential application in HDR-brachytherapy. Dose-rate distributions were obtained for cylindrical and simplified spherical Tm-170 source designs (stainless steel and platinum capsule materials) using MC calculations. Despite the high activity of Tm-170, calculated treatment times were much longer than for Ir-192.  
  Address [Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: fballest@uv.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276211200027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 478  
Permanent link to this record
 

 
Author Pujades, M.C.; Granero, D.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Papagiannis, P.; Siebert, F.A. doi  openurl
  Title Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities Type Journal Article
  Year 2014 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 34 Issue (up) 4 Pages 741-753  
  Keywords bunker; shielding; NCRP 151; brachytherapy; Monte Carlo  
  Abstract In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for Ir-192 and Co-60 HDR applications to account for several different bunker layouts. For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emitted by Ir-192 and Co-60 will reduce the lead thickness by a factor of five for Ir-192 and ten for Co-60. This will significantly lighten the door and hence simplify construction and operating requirements for all bunkers. The adaptation proposed in this study to estimate the air-kerma rate at the door depends on the complexity of the maze: it provides good results for bunkers with a maze (i.e. similar to those used for linacs for which the NCRP 151 methodology was developed) but fails for less conventional designs. For those facilities, a specific Monte Carlo study is in order for reasons of safety and cost-effectiveness.  
  Address [Pujades, M. C.] Natl Ctr Dosimetry CND, Valencia, Spain, Email: mpuclau@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345895800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2031  
Permanent link to this record
 

 
Author Candela-Juan, C.; Niatsetski, Y.; van der Laarse, R.; Granero, D.; Ballester, F.; Perez-Calatayud, J.; Vijande, J. doi  openurl
  Title Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 43 Issue (up) 4 Pages 1639-1648  
  Keywords skin applicator; Valencia applicator; HDR brachytherapy; dosimetry; Monte Carlo  
  Abstract Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a Ir-192 source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times. Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a 192Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth-dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. Conclusions: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.  
  Address [Candela-Juan, C.; Perez-Calatayud, J.] La Fe Univ & Polytech Hosp, Dept Radiat Oncol, Valencia 46026, Spain, Email: ccanjuan@gmail.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373711000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2620  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva