toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V. url  doi
openurl 
  Title SMEFT goes dark: Dark Matter models for four-fermion operators Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue (up) 9 Pages 081 - 47pp  
  Keywords SMEFT; Dark Matter at Colliders; Specific BSM Phenomenology  
  Abstract We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.  
  Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067194100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5688  
Permanent link to this record
 

 
Author De Romeri, V.; Giunti, C.; Stuttard, T.; Ternes, C.A. url  doi
openurl 
  Title Neutrino oscillation bounds on quantum decoherence Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue (up) 9 Pages 097 - 24pp  
  Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Mixing  
  Abstract We consider quantum-decoherence effects in neutrino oscillation data. Working in the open quantum system framework we adopt a phenomenological approach that allows to parameterize the energy dependence of the decoherence effects. We consider several phenomenological models. We analyze data from the reactor experiments RENO, Daya Bay and KamLAND and from the accelerator experiments NOvA, MINOS/MINOS+ and T2K. We obtain updated constraints on the decoherence parameters quantifying the strength of damping effects, which can be as low as Gamma ij less than or similar to 8 x 10-27 GeV at 90% confidence level in some cases. We also present sensitivities for the future facilities DUNE and JUNO.  
  Address [De Romeri, Valentina] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001118948700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5849  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva