toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cui, Z.F.; Ding, M.; Morgado, J.M.; Raya, K.; Binosi, D.; Chang, L.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J.; Schmidt, S.M. url  doi
openurl 
  Title Concerning pion parton distributions Type Journal Article
  Year 2022 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 58 Issue (up) 1 Pages 10 - 14pp  
  Keywords  
  Abstract Analyses of the pion valence-quark distribution function (DF), u(pi) (x; sigma), which explicitly incorporate the behaviour of the pion wave function prescribed by quantum chromodynamics (QCD), predict u(pi) (x similar or equal to 1; sigma) similar to (1 – x)(beta(sigma)), beta(sigma greater than or similar to m(p)) > 2, where mp is the proton mass. Nevertheless, more than forty years after the first experiment to collect data suitable for extracting the x similar or equal to 1 behaviour of up, the empirical status remains uncertain because some methods used to fit existing data return a result for up that violates this constraint. Such disagreement entails one of the following conclusions: the analysis concerned is incomplete; not all data being considered are a true expression of qualities intrinsic to the pion; or QCD, as it is currently understood, is not the theory of strong interactions. New, precise data are necessary before a final conclusion is possible. In developing these positions, we exploit a single proposition, viz. there is an effective charge which defines an evolution scheme for parton DFs that is all-orders exact. This proposition has numerous corollaries, which can be used to test the character of any DF, whether fitted or calculated.  
  Address [Cui, Z. -F.; Roberts, C. D.] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China, Email: binosi@ectstar.eu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000746605900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5083  
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Papavassiliou, J. url  doi
openurl 
  Title Exploring smoking-gun signals of the Schwinger mechanism in QCD Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue (up) 1 Pages 014030 - 26pp  
  Keywords  
  Abstract In Quantum Chromodynamics, the Schwinger mechanism endows the gluons with an effective mass through the dynamical formation of massless bound-state poles that are longitudinally coupled. The presence of these poles affects profoundly the infrared properties of the interaction vertices, inducing crucial modifications to their fundamental Ward identities. Within this general framework, we present a detailed derivation of the non-Abelian Ward identity obeyed by the pole-free part of the three-gluon vertex in the softgluon limit, and determine the smoking-gun displacement that the onset of the Schwinger mechanism produces to the standard result. Quite importantly, the quantity that describes this distinctive feature coincides formally with the bound-state wave function that controls the massless pole formation. Consequently, this signal may be computed in two independent ways: by solving an approximate version of the pertinent BetheSalpeter integral equation, or by appropriately combining the elements that enter in the aforementioned Ward identity. For the implementation of both methods we employ two- and three-point correlation functions obtained from recent lattice simulations, and a partial derivative of the ghost-gluon kernel, which is computed from the corresponding Schwinger-Dyson equation. Our analysis reveals an excellent coincidence between the results obtained through either method, providing a highly nontrivial self-consistency check for the entire approach. When compared to the null hypothesis, where the Schwinger mechanism is assumed to be inactive, the statistical significance of the resulting signal is estimated to be 3 standard deviations.  
  Address [Aguilar, A. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000748623100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5091  
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Ibañez, D.; Oliveira, B.M.; Papavassiliou, J. url  doi
openurl 
  Title Patterns of gauge symmetry in the background field method Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue (up) 1 Pages 86 - 20pp  
  Keywords  
  Abstract The correlation functions of Yang-Mills theories formulated in the background field method satisfy linear Slavnov-Taylor identities, which are naive generalizations of simple tree level relations, with no deformations originating from the ghost-sector of the theory. In recent years, a stronger version of these identities has been found to hold at the level of the background gluon self-energy, whose transversality is enforced separately for each special block of diagrams contributing to the gluon Schwinger-Dyson equation. In the present work we demonstrate by means of explicit calculations that the same distinct realization of the Slavnov-Taylor identity persists in the case of the background three-gluon vertex. The analysis is carried out at the level of the exact Schwinger-Dyson equation for this vertex, with no truncations or simplifying assumptions. The demonstration entails the contraction of individual vertex diagrams by the relevant momentum, which activates Slavnov-Taylor identities of vertices and multi-particle kernels nested inside these graphs; the final result emerges by virtue of a multitude of extensive cancellations, without the need of performing explicit integrations. In addition, we point out that background Ward identities amount to replacing derivatives of propagators by zero-momentum background-gluon insertions, in exact analogy to standard properties of Abelian gauge theories. Finally, certain potential applications of these results are briefly discussed.  
  Address [Aguilar, A. C.; Oliveira, B. M.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000923274000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5481  
Permanent link to this record
 

 
Author Ferreira, M.N.; Papavassiliou, J. url  doi
openurl 
  Title Gauge Sector Dynamics in QCD Type Journal Article
  Year 2023 Publication Particles Abbreviated Journal Particles  
  Volume 6 Issue (up) 1 Pages 312-363  
  Keywords continuum Schwinger function methods; emergence of hadron mass; gluon mass generation; lattice QCD; non-perturbative quantum field theory; quantum chromodynamics; Schwinger-Dyson equations; Schwinger mechanism  
  Abstract The dynamics of the QCD gauge sector give rise to non-perturbative phenomena that are crucial for the internal consistency of the theory; most notably, they account for the generation of a gluon mass through the action of the Schwinger mechanism, the taming of the Landau pole, the ensuing stabilization of the gauge coupling, and the infrared suppression of the three-gluon vertex. In the present work, we review some key advances in the ongoing investigation of this sector within the framework of the continuum Schwinger function methods, supplemented by results obtained from lattice simulations.  
  Address [Ferreira, Mauricio Narciso; Papavassiliou, Joannis] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: ansonar@uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000959126400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5504  
Permanent link to this record
 

 
Author Aguilar, A.C. et al; Papavassiliou, J. url  doi
openurl 
  Title Pion and kaon structure at the electron-ion collider Type Journal Article
  Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 55 Issue (up) 10 Pages 190 - 15pp  
  Keywords  
  Abstract Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1 GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. We compare the unique capabilities foreseen at the electron-ion collider (EIC) with those at the hadron-electron ring accelerator (HERA), the only previous electron-proton collider; and describe five key experimental measurements, enabled by the EIC and aimed at delivering fundamental insights that will generate concrete answers to the questions of how mass and structure arise in the pion and kaon, the Standard Model's NG modes, whose surprisingly low mass is critical to the evolution of our Universe.  
  Address [Aguilar, Arlene C.] Univ Campinas UNICAMP, Inst Phys Gled Wataghin, BR-13083859 Campinas, SP, Brazil, Email: ent@jlab.org;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000499964100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4212  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva