toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Krupczak, R.; da Silva, T.N.; Domingues, T.S.; Luzum, M.; Denicol, G.S.; Gardim, F.G.; Giannini, A.V.; Ferreira, M.N.; Hippert, M.; Noronha, J.; Chinellato, D.D.; Takahashi, J. url  doi
openurl 
  Title Causality violations in simulations of large and small heavy-ion collisions Type Journal Article
  Year 2024 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 109 Issue (up) 3 Pages 034908 - 12pp  
  Keywords  
  Abstract Heavy-ion collisions, such as Pb-Pb or p-Pb, produce extreme conditions in temperature and density that make the hadronic matter transition to a new state, called quark-gluon plasma (QGP). Simulations of heavy-ion collisions provide a way to improve our understanding of the QGP's properties. These simulations are composed of a hybrid description that results in final observables in agreement with accelerators like LHC and RHIC. However, recent works pointed out that these hydrodynamic simulations can display acausal behavior during the evolution in certain regions, indicating a deviation from a faithful representation of the underlying QCD dynamics. To pursue a better understanding of this problem and its consequences, this work simulated two different collision systems, Pb-Pb and p-Pb at root sNN = 5.02 TeV. In this context, our results show that causality violation, even though always present, typically occurs on a small part of the system, quantified by the total energy fraction residing in the acausal region. In addition, the acausal behavior can be reduced with changes in the prehydrodynamic factors and the definition of the bulk-viscous relaxation time. Since these aspects are fairly arbitrary in current simulation models, without solid guidance from the underlying theory, it is reasonable to use the disturbing presence of acausal behavior in current simulations to guide improvements towards more realistic modeling. While this work does not solve the acausality problem, it sheds more light on this issue and also proposes a way to solve this problem in simulations of heavy-ion collisions.  
  Address [Krupczak, Renata; da Silva, Tiago Nunes] Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Dept Fis, Campus Univ Reitor Joao David Ferreira Lima, BR-88040900 Florianopolis, Brazil, Email: rkrupczak@physik.uni-bielefeld.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001198699800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6113  
Permanent link to this record
 

 
Author Nunes da Silva, T.; Chinellato, D.D.; Giannini, A.V.; Takahashi, J.; Ferreira, M.N.; Denicol, G.S.; Hippert, M.; Noronha, J.; Luzum, M. url  doi
openurl 
  Title Prehydrodynamic evolution in large and small systems Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 107 Issue (up) 4 Pages 044901 - 12pp  
  Keywords  
  Abstract We extend our previous investigation of the effects of prehydrodynamic evolution on final-state observables in heavy-ion collisions [38] to smaller systems. We use a state-of-the-art hybrid model for the numerical simulations with optimal parameters obtained from a previous Bayesian study. By studying p-Pb collisions, we find that the effects due to the assumption of a conformal evolution in the prehydrodynamical stage are even more important in small systems. We also show that this effect depends on the time duration of the pre-equilibrium stage, which is further enhanced in small systems. Finally, we show that the recent proposal of a free-streaming with subluminal velocity for the pre-equilibrium stage, thus effectively breaking conformal invariance, can alleviate the contamination of final-state observables. Our study further reinforces the need for moving beyond conformal approaches in pre-equilibrium dynamics modeling, especially when extracting transport coefficients from hybrid models in the high-precision era of heavy-ion collisions.  
  Address [da Silva, T. Nunes] Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Dept Fis, Campus Univ Reitor Joao David Ferreira Lima, BR-88040900 Florianopolis, Brazil, Email: t.j.nunes@ufsc.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000974911400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5524  
Permanent link to this record
 

 
Author Aguilar, A.C.; Ambrosio, C.O.; De Soto, F.; Ferreira, M.N.; Oliveira, B.M.; Papavassiliou, J.; Rodriguez-Quintero, J. url  doi
openurl 
  Title Ghost dynamics in the soft gluon limit Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue (up) 5 Pages 054028 - 18pp  
  Keywords  
  Abstract We present a detailed study of the dynamics associated with the ghost sector of quenched QCD in the Landau gauge, where the relevant dynamical equations are supplemented with key inputs originating from large-volume lattice simulations. In particular, we solve the coupled system of Schwinger-Dyson equations that governs the evolution of the ghost dressing function and the ghost-gluon vertex, using as input for the gluon propagator lattice data that have been cured from volume and discretization artifacts. In addition, we explore the soft gluon limit of the same system, employing recent lattice data for the three-gluon vertex that enters in one of the diagrams defining the Schwinger-Dyson equation of the ghost-gluon vertex. The results obtained from the numerical treatment of these equations are in excellent agreement with lattice data for the ghost dressing function, once the latter have undergone the appropriate scale-setting and artifact elimination refinements. Moreover, the coincidence observed between the ghost-gluon vertex in general kinematics and in the soft gluon limit reveals an outstanding consistency of physical concepts and computational schemes.  
  Address [Aguilar, A. C.; Ambrosio, C. O.; Ferreira, M. N.; Oliveira, B. M.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704624500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4992  
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Papavassiliou, J.; Santos, L.R. url  doi
openurl 
  Title Planar degeneracy of the three-gluon vertex Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue (up) 6 Pages 549 - 20pp  
  Keywords  
  Abstract We present a detailed exploration of certain outstanding features of the transversely-projected three-gluon vertex, using the corresponding Schwinger-Dyson equation in conjunction with key results obtained from quenched lattice simulations. The main goal of this study is the scrutiny of the approximate property denominated “planar degeneracy”, unveiled when the Bose symmetry of the vertex is properly exploited. The planar degeneracy leads to a particularly simple parametrization of the vertex, reducing its kinematic dependence to essentially a single variable. Our analysis, carried out in the absence of dynamical quarks, reveals that the planar degeneracy is particularly accurate for the description of the form factor associated with the classical tensor, for a wide array of arbitrary kinematic configurations. Instead, the remaining three form factors display considerable violations of this property. In addition, and in close connection with the previous point, we demonstrate the numerical dominance of the classical form factor over all others, except in the vicinity of the soft-gluon kinematics. The final upshot of these considerations is the emergence of a very compact description for the three-gluon vertex in general kinematics, which may simplify significantly nonperturbative applications involving this vertex.  
  Address [Aguilar, A. C.; Santos, L. R.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001117709800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5847  
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J. url  doi
openurl 
  Title Nonperturbative Ball-Chiu construction of the three-gluon vertex Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue (up) 9 Pages 094010 - 30pp  
  Keywords  
  Abstract We present the detailed derivation of the longitudinal part of the three-gluon vertex from the Slavnov-Taylor identities that it satisfies, by means of a nonperturbative implementation of the Ball-Chiu construction; the latter, in its original form, involves the inverse gluon propagator, the ghost dressing function, and certain form factors of the ghost-gluon kernel. The main conceptual subtlety that renders this endeavor nontrivial is the infrared finiteness of the gluon propagator, and the resulting need to separate the vertex into two pieces, one that is intimately connected with the emergence of a gluonic mass scale, and one that satisfies the original set of Slavnov-Taylor identities, but with the inverse gluon propagator replaced by its “kinetic” term. The longitudinal form factors obtained by this construction are presented for arbitrary Euclidean momenta, as well as special kinematic configurations, parametrized by a single momentum. A particularly preeminent feature of the components comprising the tree-level vertex is their considerable suppression for momenta below 1 GeV, and the appearance of the characteristic “zero-crossing” in the vicinity of 100-200 MeV. Special combinations of the form factors derived with this method are compared with the results of recent large-volume lattice simulations, and are found to capture faithfully the rather complicated curves formed by the data. A similar comparison with results obtained from Schwinger-Dyson equations reveals a fair overall agreement, but with appreciable differences at intermediate energies. A variety of issues related to the distribution of the pole terms responsible for the gluon mass generation are discussed in detail, and their impact on the structure of the transverse parts is elucidated. In addition, a brief account of several theoretical and phenomenological possibilities involving these newly acquired results is presented.  
  Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467734600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4010  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva