|   | 
Details
   web
Records
Author NEXT Collaboration (Adams, C. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue (down) 8 Pages 164 - 24pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0 nu beta beta) decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0 nu beta beta decay better than 10(27) years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000694208600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4967
Permanent link to this record
 

 
Author Arbelaez, C.; Cepedello, R.; Helo, J.C.; Hirsch, M.; Kovalenko, S.
Title How many 1-loop neutrino mass models are there? Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue (down) 8 Pages 023 - 29pp
Keywords Other Weak Scale BSM Models; Models for Dark Matter; Neutrino Interactions
Abstract It is well-known that at tree-level the d = 5 Weinberg operator can be generated in exactly three different ways, the famous seesaw models. In this paper we study the related question of how many phenomenologically consistent 1-loop models one can construct at d=5. First, we discuss that there are two possible classes of 1-loop neutrino mass models, that allow avoiding stable charged relics: (i) models with dark matter candidates and (ii) models with “exits”. Here, we define “exits” as particles that can decay into standard model fields. Considering 1-loop models with new scalars and fermions, we find in the dark matter class a total of (115+203) models, while in the exit class we find (38+368) models. Here, 115 is the number of DM models, which require a stabilizing symmetry, while 203 is the number of models which contain a dark matter candidate, which maybe accidentally stable. In the exit class the 38 refers to models, for which one (or two) of the internal particles in the loop is a SM field, while the 368 models contain only fields beyond the SM (BSM) in the neutrino mass diagram. We then study the RGE evolution of the gauge couplings in all our 1-loop models. Many of the models in our list lead to Landau poles in some gauge coupling at rather low energies and there is exactly one model which unifies the gauge couplings at energies above 10(15) GeV in a numerically acceptable way.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Dept Phys, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000835685500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5320
Permanent link to this record
 

 
Author Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A.; Titov, A.
Title Sterile neutrino portals to Majorana dark matter: effective operators and UV completions Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue (down) 8 Pages 085 - 36pp
Keywords Models for Dark Matter; Particle Nature of Dark Matter; Sterile or Heavy Neutrinos; Baryon/Lepton Number Violation
Abstract Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively.
Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000836782300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5340
Permanent link to this record
 

 
Author Martinelli, M.; Scarcella, F.; Hogg, N.B.; Kavanagh, B.J.; Gaggero, D.; Fleury, P.
Title Dancing in the dark: detecting a population of distant primordial black holes Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue (down) 8 Pages 006 - 47pp
Keywords dark matter theory; gravitational waves / experiments; gravitational waves / sources; primordial black holes
Abstract Primordial black holes (PBHs) are compact objects proposed to have formed in the early Universe from the collapse of small-scale over-densities. Their existence may be detected from the observation of gravitational waves (GWs) emitted by PBH mergers, if the signals can be distinguished from those produced by the merging of astrophysical black holes. In this work, we forecast the capability of the Einstein Telescope, a proposed third-generation GW observatory, to identify and measure the abundance of a subdominant population of distant PBHs, using the difference in the redshift evolution of the merger rate of the two populations as our discriminant. We carefully model the merger rates and generate realistic mock catalogues of the luminosity distances and errors that would be obtained from GW signals observed by the Einstein Telescope. We use two independent statistical methods to analyse the mock data, finding that, with our more powerful, likelihood-based method, PBH abundances as small as fPBH approximate to 7 x 10(-6) ( fPBH approximate to 2 x 10(-6)) would be distinguishable from f(PBH) = 0 at the level of 3 sigma with a one year (ten year) observing run of the Einstein Telescope. Our mock data generation code, darksirens, is fast, easily extendable and publicly available on GitLab.
Address [Martinelli, Matteo] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Rome, Italy, Email: matteo.martinelli@inaf.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000911612900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5461
Permanent link to this record
 

 
Author Garcia-Barcelo, J.M.; Melcon, A.A.; Diaz-Morcillo, A.; Gimeno, B.; Lozano-Guerrero, A.J.; Monzi-Cabrera, J.; Navarro-Madrid, J.R.; Navarro, P.
Title Methods and restrictions to increase the volume of resonant rectangular-section haloscopes for detecting dark matter axions Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue (down) 8 Pages 098 - 37pp
Keywords Axions and ALPs; Particle Nature of Dark Matter
Abstract Haloscopes are resonant cavities that serve as detectors of dark matter axions when they are immersed in a strong static magnetic field. In order to increase the volume and improve space compatibility with dipole or solenoid magnets for axion searches, various haloscope design techniques for rectangular geometries are discussed in this study. The volume limits of two types of haloscopes are explored: those based on single cavities and those based on multicavities. In both cases, possibilities for increasing the volume of long and/or tall structures are presented. For multicavities, 1D geometries are explored to optimise the space in the magnets. Also, 2D and 3D geometries are introduced as a first step in laying the foundations for the development of these kinds of topologies. The results prove the usefulness of the developed methods, evidencing the ample room for improvement in rectangular haloscope designs nowadays. A factor of three orders of magnitude improvement in volume compared with a single cavity based on the WR-90 standard waveguide is obtained with the design of a long and tall single cavity. Similar procedures have been applied for long and tall multicavities. Experimental measurements are shown for prototypes based on tall multicavities and 2D structures, demonstrating the feasibility of using these types of geometries to increase the volume of real haloscopes.
Address [Garcia-Barcelo, J. M.; Melcon, A. Alvarez; Diaz-Morcillo, A.; Lozano-Guerrero, A. J.; Monzo-Cabrera, J.; Navarro-Madrid, J. R.; Navarro, P.] Univ Politecn Cartagena, Dept Tecnol Informac & Comun, Pl Hosp 1, Cartagena 30302, Spain, Email: josemaria.garcia@upct.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001050076700002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5611
Permanent link to this record