|   | 
Details
   web
Records
Author KM3NeT Collaboration (Aiello, S. et al); Barrios-Marti, J.; Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Perez Romero, J.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue (up) Pages P05035 - 17pp
Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors; Photon detectors for UV, visible and IR photons (vacuum)
Abstract The Hamamatsu R12199-023-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum efficiency, the gain and the peak-to-valley ratio have also been measured for a sub-sample in order to determine parameter values needed as input to numerical simulations of the detector.
Address [Morganti, M.] Accademia Navale Livorno, Viale Italia 72, I-57100 Livorno, Italy, Email: oleg.kalekin@physik.uni-erlangen.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000433886900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3601
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Barrios-Marti, J.; Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Lotze, M.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources Type Journal Article
Year 2019 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 111 Issue (up) Pages 100-110
Keywords Astrophysical neutrino sources; Cherenkov underwater neutrino telescope; KM3NeT
Abstract KM3NeT will be a network of deep-sea neutrino telescopes in the Mediterranean Sea. The KM3NeT/ARCA detector, to be installed at the Capo Passero site (Italy), is optimised for the detection of high-energy neutrinos of cosmic origin. Thanks to its geographical location on the Northern hemisphere, KM3NeT/ARCA can observe upgoing neutrinos from most of the Galactic Plane, including the Galactic Centre. Given its effective area and excellent pointing resolution, KM3NeT/ARCA will measure or significantly constrain the neutrino flux from potential astrophysical neutrino sources. At the same time, it will test flux predictions based on gamma-ray measurements and the assumption that the gamma-ray flux is of hadronic origin. Assuming this scenario, discovery potentials and sensitivities for a selected list of Galactic sources and to generic point sources with an E(-2 )spectrum are presented. These spectra are assumed to be time independent. The results indicate that an observation with 3 sigma significance is possible in about six years of operation for the most intense sources, such as Supernovae Remnants RX J1713.7-3946 and Vela Jr. If no signal will be found during this time, the fraction of the gamma-ray flux coming from hadronic processes can be constrained to be below 50% for these two objects.
Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.; Tatone, F.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sapienza@lns.infn.it;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000470047300008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4047
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Model-independent search for neutrino sources with the ANTARES neutrino telescope Type Journal Article
Year 2020 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 114 Issue (up) Pages 35-47
Keywords Neutrino astronomy; Astroparticle physics; Pattern recognition; Anisotropy
Abstract A novel method to analyse the spatial distribution of neutrino candidates recorded with the ANTARES neutrino telescope is introduced, searching for an excess of neutrinos in a region of arbitrary size and shape from any direction in the sky. Techniques originating from the domains of machine learning, pattern recognition and image processing are used to purify the sample of neutrino candidates and for the analysis of the obtained skymap. In contrast to a dedicated search for a specific neutrino emission model, this approach is sensitive to a wide range of possible morphologies of potential sources of high-energy neutrino emission. The application of these methods to ANTARES data yields a large-scale excess with a post-trial significance of 2.5 sigma. Applied to public data from IceCube in its IC40 configuration, an excess consistent with the results from ANTARES is observed with a post-trial significance of 2.1 sigma.
Address [Albert, A.; Drouhin, D.; Racca, C.; Saldana, M.] Univ Haute Alsace, Inst Univ Technol Colmar, GRPHE, 34 Rue Grillenbreit,BP Colmar 50568, F-68008 Mulhouse, France, Email: stefan.geisselsoeder@fau.de;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000489353300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4167
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Search for dark matter towards the Galactic Centre with 11 years of ANTARES data Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 805 Issue (up) Pages 135439 - 6pp
Keywords Dark matter indirect detection; Neutrino telescope; Galactic Centre; ANTARES
Abstract Neutrino detectors participate in the indirect search for the fundamental constituents of dark matter (DM) in form of weakly interacting massive particles (WIMPs). In WIMP scenarios, candidate DM particles can pair-annihilate into Standard Model products, yielding considerable fluxes of high-energy neutrinos. A detector like ANTARES, located in the Northern Hemisphere, is able to perform a complementary search looking towards the Galactic Centre, where a high density of dark matter is thought to accumulate. Both this directional information and the spectral features of annihilating DM pairs are entered into an unbinned likelihood method to scan the data set in search for DM-like signals in ANTARES data. Results obtained upon unblinding 3170 days of data reconstructed with updated methods are presented, which provides a larger, and more accurate, data set than a previously published result using 2101 days. A non-observation of dark matter is converted into limits on the velocity-averaged cross section for WIMP pair annihilation.
Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France, Email: srgozzini@km3net.de
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000541379800026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4439
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes Type Journal Article
Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 256 Issue (up) Pages 107477 - 15pp
Keywords Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE
Abstract The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.
Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000564482200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4520
Permanent link to this record