|   | 
Details
   web
Records
Author de Campos, F.; Eboli, O.J.P.; Hirsch, M.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F.
Title Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue (down) 7 Pages 075002 - 8pp
Keywords
Abstract The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
Address [de Campos, F.] Univ Estadual Paulista, Dept Quim & Fis, Guaratingueta, SP, Brazil, Email: camposc@feg.unesp.br
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000282570100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 367
Permanent link to this record
 

 
Author Bonnet, F.; Hirsch, M.; Ota, T.; Winter, W.
Title Systematic study of the d=5 Weinberg operator at one-loop order Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue (down) 7 Pages 153 - 23pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We perform a systematic study of the d = 5 Weinberg operator at the one-loop level. We identify three different categories of neutrino mass generation: (1) finite irreducible diagrams; (2) finite extensions of the usual seesaw mechanisms at one-loop and (3) divergent loop realizations of the seesaws. All radiative one-loop neutrino mass models must fall in to one of these classes. Case (1) gives the leading contribution to neutrino mass naturally and a classic example of this class is the Zee model. We demonstrate that in order to prevent that a tree level contribution dominates in case (2), Majorana fermions running in the loop and an additional Z(2) symmetry are needed for a genuinely leading one-loop contribution. In the type-II loop extensions, the Yukawa coupling will be generated at one loop, whereas the type-I/III extensions can be interpreted as loop-induced inverse or linear seesaw mechanisms. For the divergent diagrams in category (3), the tree level contribution cannot be avoided and is in fact needed as counter term to absorb the divergence.
Address [Bonnet, Florian; Winter, Walter] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: florian.bonnet@physik.uni-wuerzburg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000307299800031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1159
Permanent link to this record
 

 
Author Campos, F.; Eboli, O.J.P.; Magro, M.B.; Porod, W.; Restrepo, D.; Das, S.P.; Hirsch, M.; Valle, J.W.F.
Title Probing neutralino properties in minimal supergravity with bilinear R-parity violation Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue (down) 7 Pages 075001 - 8pp
Keywords
Abstract Supersymmetric models with bilinear R-parity violation can account for the observed neutrino masses and mixing parameters indicated by neutrino oscillation data. We consider minimal supergravity versions of bilinear R-parity violation where the lightest supersymmetric particle is a neutralino. This is unstable, with a large enough decay length to be detected at the CERN Large Hadron Collider. We analyze the Large Hadron Collider potential to determine the lightest supersymmetric particle properties, such as mass, lifetime and branching ratios, and discuss their relation to neutrino properties.
Address [de Campos, F.] Univ Estadual Paulista, Dept Fis & Quim, BR-12516410 Sao Paulo, Brazil, Email: camposc@feg.unesp.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000309346800011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1167
Permanent link to this record
 

 
Author Arbelaez, C.; Fonseca, R.M.; Romao, J.C.; Hirsch, M.
Title Supersymmetric SO(10)-inspired GUTs with sliding scales Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue (down) 7 Pages 075010 - 19pp
Keywords
Abstract We construct lists of supersymmetric models with extended gauge groups at intermediate steps, all of which are inspired by SO(10) unification. We consider three different kinds of setups: (i) the model has exactly one additional intermediate scale with a left-right (LR) symmetric group; (ii) SO(10) is broken to the LR group via an intermediate Pati-Salam scale; and (iii) the LR group is broken into SU(3)(c) X SU(2)(L) X U(1)(R) X U(1)(B-L), before breaking to the standard model (SM) group. We use sets of conditions, which we call the “sliding mechanism,” which yield unification with the extended gauge group(s) allowed at arbitrary intermediate energy scales. All models thus can have new gauge bosons within the reach of the LHC, in principle. We apply additional conditions, such as perturbative unification, renormalizability and anomaly cancellation and find that, despite these requirements, for the ansatz (i) with only one additional scale still around 50 different variants exist that can have a LR symmetry below 10 TeV. For the more complicated schemes (ii) and (iii) literally thousands of possible variants exist, and for scheme (ii) we have also found variants with very low Pati-Salam scales. We also discuss possible experimental tests of the models from measurements of supersymmetry masses. Assuming mSugra boundary conditions we calculate certain combinations of soft terms, called “invariants,” for the different classes of models. Values for all the invariants can be classified into a small number of sets, which contain information about the class of models and, in principle, the scale of beyond-minimal supersymmetric extension of the Standard Model physics, even in case the extended gauge group is broken at an energy beyond the reach of the LHC.
Address Univ Tecn Lisboa, Dept Fis, P-1049001 Lisbon, Portugal, Email: Carolina.Arbelaez@ist.utl.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000317586900007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1401
Permanent link to this record
 

 
Author Helo, J.C.; Kovalenko, S.G.; Hirsch, M.; Pas, H.
Title Short-range mechanisms of neutrinoless double beta decay at the LHC Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue (down) 7 Pages 073011 - 19pp
Keywords
Abstract Lepton number violation (LNV) mediated by short- range operators can manifest itself in both neutrinoless double beta decay (0 nu beta beta) and in processes with same- sign dilepton final states at the LHC. We derive limits from existing LHC data at root s = 8 TeV and compare the discovery potential of the forthcoming root s = 14 TeV phase of the LHC with the sensitivity of current and future 0 nu beta beta decay experiments, assuming the short-range part of the 0 nu beta beta decay amplitude dominates. We focus on the first of two possible topologies triggered by one fermion and two bosons in the intermediate state. In all cases, except for the pure leptoquark mechanism, the LHC will be more sensitive than 0 nu beta beta decay in the future. In addition, we propose to search for a charge asymmetry in the final state leptons and to use different invariant mass peaks as a possible tool to discriminate the various possible mechanisms for LNV signals at the LHC.
Address [Helo, J. C.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Valparaiso, Chile, Email: juan.heloherrera@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000326111000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1627
Permanent link to this record