toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Neutrino interaction classification with a convolutional neural network in the DUNE far detector Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue (down) 9 Pages 092003 - 20pp  
  Keywords  
  Abstract The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.  
  Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: saul.alonso.monsalve@cern.ch;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000587596500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4598  
Permanent link to this record
 

 
Author Penalva, N.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title (B)over-bar(c) ->eta(c),(B)over-bar(c) -> J/psi and (B)over-bar -> D-(*()) semileptonic decays including new physics Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue (down) 9 Pages 096016 - 27pp  
  Keywords  
  Abstract We apply the general formalism derived by Penalva et al. [Phys. Rev. D 101, 113004 (2020)] to the semileptonic decay of pseudoscalar mesons containing a b quark. While present (B) over bar -> D-(*()) data give the strongest evidence in favor of lepton flavor universality violation, the observables that are normally considered are not able to distinguish between different new physics (NP) scenarios. In the above reference we discussed the relevant role that the various contributions to the double differential decay widths d(2)Gamma (d omega d cos theta(l)) and d(2)Gamma (d omega dE(l)) could play to this end. Here omega is the product of the two hadron fourvelocities, theta(l) is the angle made by the final lepton and final hadron three-momenta in the center of mass of the final two-lepton system, and E-l is the final charged lepton energy in the laboratory system. The formalism was applied by Penalva et al. to the analysis of the Lambda(b) -> Lambda(c) semileptonic decay, showing the new observables were able to tell apart different NP scenarios. Here we analyze the (B) over barc -> eta(c)tau(nu) over bar (tau), (B) over barc -> J/psi tau(nu) over bar (tau), (B) over bar -> D tau(nu) over bar (tau) and (B) over bar -> D*tau(nu) over bar (tau) , semileptonic decays. We find that, as a general rule, the (B) over barc -> J/psi observables, even including (tau) polarization, are less optimal for distinguishing between NP scenarios than those obtained from (B) over barc -> eta(c) decays, or those presented by Penalva et al. for the related Lambda(b) -> Lambda(c) semileptonic decay. Finally, we show that (B) over bar -> D and (B) over barc -> eta(c) , and (B) over bar -> D* and (B) over barc -> J/psi decay observables exhibit similar behaviors.  
  Address [Penalva, Neus; Hernandez, Eliecer] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000588583900012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4608  
Permanent link to this record
 

 
Author Chen, P.; Ding, G.J.; Lu, J.N.; Valle, J.W.F. url  doi
openurl 
  Title Predictions from warped flavor dynamics based on the T ' family group Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue (down) 9 Pages 095014 - 17pp  
  Keywords  
  Abstract We propose a realistic theory of fermion masses and mixings using a five-dimensional warped scenario where all fermions propagate in the bulk and the Higgs field is localized on the IR bran. The assumed T' flavor symmetry is broken on the branes by flavon fields, providing a consistent scenario where fermion mass hierarchies arise from adequate choices of the bulk mass parameters, while quark and lepton mixing angles are restricted by the family symmetry. Neutrino mass splittings, mixing parameters and the Dirac CP phase all arise from the type-I seesaw mechanism and are tightly correlated, leading to predictions for the neutrino oscillation parameters, as well as expected 0 nu beta beta decay rates within reach of upcoming experiments. The scheme also provides a good global description of flavor observables in the quark sector.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000589907700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4610  
Permanent link to this record
 

 
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A. url  doi
openurl 
  Title Study of the reactions e(+)e(-) -> 2(pi(+)pi(-))pi(0)pi(0)pi(0) and 2(pi(+)pi(-))pi(0)pi(0)eta at center-of-mass energies from threshold to 4.5 GeV using initial-state radiation Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue (down) 9 Pages 092001 - 21pp  
  Keywords  
  Abstract We study the processes e(+)e(-) -> 2(pi(+)pi(-))pi(0)pi(0)pi(0)gamma and 2(pi(+)pi(-))pi(0)pi(0)eta gamma in which an energetic photon is radiated from the initial state. The data were collected with the BABAR detector at SLAC. About 14 000 and 4700 events, respectively, are selected from a data sample corresponding to an integrated luminosity of 469 fb(-1). The invariant mass of the hadronic final state defines the effective e(+)e(-) center-of-mass energy. The center-of-mass energies range from threshold to 4.5 GeV. From the mass spectra, the first ever measurements of the e(+)e(-) -> 2(pi(+)pi(-))pi(0)pi(0)pi(0) and the e(+)e(-) -> 2(pi(+)pi(-))pi(0)pi(0)eta cross sections are performed. The contributions from omega pi(+)pi(-)pi(0)pi(0), eta 2(pi(+)pi(-)), and other intermediate states are presented. We observe the J/psi and psi(2S) in most of these final states and measure the corresponding branching fractions, many of them for the first time.  
  Address [Lees, J. P.; Poireau, V; Tisserand, V] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS IN2P3, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000649438100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4831  
Permanent link to this record
 

 
Author Gao, F.; Papavassiliou, J.; Pawlowski, J.M. url  doi
openurl 
  Title Fully coupled functional equations for the quark sector of QCD Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue (down) 9 Pages 094013 - 25pp  
  Keywords  
  Abstract We present a comprehensive study of the quark sector of 2 + 1 flavor QCD, based on a self-consistent treatment of the coupled system of Schwinger-Dyson equations for the quark propagator and the full quark-gluon vertex in the one-loop dressed approximation. The individual form factors of the quark-gluon vertex are expressed in a special tensor basis obtained from a set of gauge-invariant operators. The sole external ingredient used as input to our equations is the Landau gauge gluon propagator with 2 + 1 dynamical quark flavors, obtained from studies with Schwinger-Dyson equations, the functional renormalization group approach, and large volume lattice simulations. The appropriate renormalization procedure required in order to self-consistently accommodate external inputs stemming from other functional approaches or the lattice is discussed in detail, and the value of the gauge coupling is accurately determined at two vastly separated renormalization group scales. Our analysis establishes a clear hierarchy among the vertex form factors. We identify only three dominant ones, in agreement with previous results. The components of the quark propagator obtained from our approach are in excellent agreement with the results from Schwinger-Dyson equations, the functional renormalization group, and lattice QCD simulation, a simple benchmark observable being the chiral condensate in the chiral limit, which is computed as (245 MeV)(3). The present approach has a wide range of applications, including the self-consistent computation of bound-state properties and finite temperature and density physics, which are briefly discussed.  
  Address [Gao, Fei; Pawlowski, Jan M.] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000655868700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4848  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva