|   | 
Details
   web
Records
Author n_TOF Collaboration (Tagliente, G. et al.); Domingo-Pardo, C.; Tain, J.L.
Title (96)Zr(n,gamma) measurement at the n_TOF facility at CERN Type Journal Article
Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 84 Issue (up) 5 Pages 055802 - 8pp
Keywords
Abstract The (n,gamma) cross section of (96)Zr has been investigated at the CERN n_TOF spallation neutron source. High-resolution time-of-flight measurements using an enriched ZrO(2) sample allowed us to analyze 15 resonances below 40 keV with improved accuracy. On average, the capture widths were found to be 25% smaller than reported in earlier experiments. If complemented with the contribution by direct radiative capture, the derived Maxwellian averaged cross sections are consistent with activation data at kT = 25 keV. The present results confirm the astrophysical implications for the s-process branching at (95)Zr.
Address [Tagliente, G; Colonna, N; Marrone, S; Terlizzi, R] Ist Nazl Fis Nucl, I-70126 Bari, Italy, Email: giuseppe.tagliente@ba.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000297121100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 812
Permanent link to this record
 

 
Author Briz, J.A.; Nacher, E.; Borge, M.J.G.; Algora, A.; Rubio, B.; Dessagne, P.; Maira, A.; Cano-Ott, D.; Courtin, S.; Escrig, D.; Fraile, L.M.; Gelletly, W.; Jungclaus, A.; Le Scornet, G.; Marechal, F.; Miehe, C.; Poirier, E.; Poves, A.; Sarriguren, P.; Tain, J.L.; Tengblad, O.
Title Shape study of the N = Z nucleus Kr-72 via beta decay Type Journal Article
Year 2015 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 92 Issue (up) 5 Pages 054326 - 10pp
Keywords
Abstract The beta decay of the N = Z nucleus Kr-72 has been studied with the total absorption spectroscopy technique at ISOLDE (CERN). A total B(GT) = 0.79(4)g(A)(2)/4 pi has been found up to an excitation energy of 2.7 MeV. The B(GT) distribution obtained is compared with predictions from state-of-the-art theoretical calculations to learn about the ground state deformation of Kr-72. Although a dominant oblate deformation is suggested by direct comparison with quasiparticle random phase approximation (QRPA) calculations, beyond-mean-field and shell-model calculations favor a large oblate-prolate mixing in the ground state.
Address [Briz, J. A.; Nacher, E.; Borge, M. J. G.; Maira, A.; Escrig, D.; Jungclaus, A.; Sarriguren, P.; Tengblad, O.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: jose.briz@subatech.in2p3.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000365867500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2486
Permanent link to this record
 

 
Author n_TOF Collaboration (Mendoza, E. et al); Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Measurement and analysis of the Am-241 neutron capture cross section at the n_TOF facility at CERN Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 97 Issue (up) 5 Pages 054616 - 21pp
Keywords
Abstract The Am-241(n, gamma) cross section has been measured at the nTOF facility at CERN with the nTOF BaF2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150-160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results are in reasonable agreement with JEFF-3.2 as well as with the most recent direct measurements of the resonance integral, and differ up to 20-30% with other experimental data. Between 20 eV and 1 keV, the disagreement with other experimental data and evaluations gradually decreases, in general, with the neutron energy. Above 1 keV, we find compatible results with previously existing values.
Address [Mendoza, E.; Cano-Ott, D.; Balibrea, J.; Becares, V; Garcia, A. R.; Gonzalez, E.; Lopez, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain, Email: emilio.mendoza@ciemat.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000433032300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3584
Permanent link to this record
 

 
Author n_TOF Collaboration (Gunsing, F. et al); Domingo-Pardo, C.; Tain, J.L.
Title Measurement of resolved resonances of Th-232(n, gamma) at the n_TOF facility at CERN Type Journal Article
Year 2012 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 85 Issue (up) 6 Pages 064601 - 17pp
Keywords
Abstract The yield of the neutron capture reaction Th-232(n, gamma) has been measured at the neutron time-of-flight facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The reduction of the acquired data to the capture yield for resolved resonances from 1 eV to 4 keV is described and compared to a recent evaluated data set. The resonance parameters were used to assign an orbital momentum to each resonance. A missing level estimator was used to extract the s-wave level spacing of D-0 = 17.2 +/- 0.9 eV.
Address [Gunsing, F.; Berthoumieux, E.; Aerts, G.; Andriamonje, S.; Dridi, W.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay, DSM, Irfu, SPhN, F-91191 Gif Sur Yvette, France, Email: gunsing@cea.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000304693700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1048
Permanent link to this record
 

 
Author Tain, J.L. et al; Valencia, E.; Algora, A.; Agramunt, J.; Rubio, B.; Estevez, E.; Jordan, M.D.
Title Enhanced gamma-Ray Emission from Neutron Unbound States Populated in beta Decay Type Journal Article
Year 2015 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 115 Issue (up) 6 Pages 062502 - 5pp
Keywords
Abstract Total absorption spectroscopy is used to investigate the beta-decay intensity to states above the neutron separation energy followed by gamma-ray emission in Br-87,Br-88 and Rb-94. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large. intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The gamma branching as a function of excitation energy is compared to Hauser-Feshbach model calculations. For Br-87 and Br-88 the gamma branching reaches 57% and 20%, respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daughter can only decay through the emission of a large orbital angular momentum neutron with a strongly reduced barrier penetrability. In the case of neutron-rich Rb-94 the observed 4.5% branching is much larger than the calculations performed with standard nuclear statistical model parameters, even after proper correction for fluctuation effects on individual transition widths. The difference can be reconciled by introducing an enhancement of 1 order of magnitude in the photon strength to neutron strength ratio. An increase in the photon strength function of such magnitude for very neutron-rich nuclei, if it proves to be correct, leads to a similar increase in the (n, gamma) cross section that would have an impact on r process abundance calculations.
Address [Tain, J. L.; Valencia, E.; Algora, A.; Agramunt, J.; Rubio, B.; Estevez, E.; Jordan, M. D.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: tain@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000359059100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2319
Permanent link to this record