|   | 
Details
   web
Records
Author Abbar, S.; Capozzi, F.
Title Suppression of fast neutrino flavor conversions occurring at large distances in core-collapse supernovae Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue (down) 3 Pages 051 - 13pp
Keywords supernova neutrinos; core-collapse supernovae; neutrino astronomy; supernovas
Abstract Neutrinos propagating in dense neutrino media such as core-collapse supernovae and neutron star merger remnants can experience the so-called fast flavor conversions on scales much shorter than those expected in vacuum. A very generic class of fast flavor instabilities is the ones which are produced by the backward scattering of neutrinos off the nuclei at relatively large distances from the supernova core. In this study we demonstrate that despite their ubiquity, such fast instabilities are unlikely to cause significant flavor conversions if the population of neutrinos in the backward direction is not large enough. Indeed, the scattering-induced instabilities can mostly impact the neutrinos traveling in the backward direction, which represent only a small fraction of neutrinos at large radii. We show that this can be explained by the shape of the unstable flavor eigenstates, which can be extremely peaked at the backward angles.
Address [Abbar, Sajad] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: abbar@mpp.mpg.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000776551600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5186
Permanent link to this record
 

 
Author Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Pastor, S.; Tortola, M.
Title Non-unitary three-neutrino mixing in the early Universe Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue (down) 3 Pages 046 - 18pp
Keywords cosmological neutrinos; neutrino properties; neutrino theory
Abstract Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.
Address [Gariazzo, Stefano] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000959757500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5516
Permanent link to this record
 

 
Author Domcke, V.; Ema, Y.; Sandner, S.
Title Perturbatively including inhomogeneities in axion inflation Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue (down) 3 Pages 019 - 24pp
Keywords axions; inflation; particle physics- cosmology connection
Abstract Axion inflation, i.e. an axion-like inflaton coupled to an Abelian gauge field through a Chern-Simons interaction, comes with a rich and testable phenomenology. This is particularly true in the strong backreaction regime, where the gauge field production heavily impacts the axion dynamics. Lattice simulations have recently demonstrated the importance of accounting for inhomogeneities of the axion field in this regime. We propose a perturbative scheme to account for these inhomogeneities while maintaining high computational efficiency. Our goal is to accurately capture deviations from the homogeneous axion field approximation within the perturbative regime as well as self -consistently determine the onset of the nonperturbative regime.
Address [Domcke, Valerie] CERN, Theoret Phys Dept, Geneva 23, Switzerland, Email: valerie.domcke@cern.ch;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001185016600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6020
Permanent link to this record
 

 
Author Amerio, A.; Calore, F.; Serpico, P.D.; Zaldivar, B.
Title Deepening gamma-ray point-source catalogues with sub-threshold information Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue (down) 3 Pages 055 - 18pp
Keywords gamma ray theory; Frequentist statistics
Abstract We propose a novel statistical method to extend Fermi-LAT catalogues of highlatitude -y-ray sources below their nominal threshold. To do so, we rely on the determination of the differential source -count distribution of sub -threshold sources which only provides the statistical flux distribution of faint sources. By simulating ensembles of synthetic skies, we assess quantitatively the likelihood for pixels in the sky with relatively low -test statistics to be due to sources, therefore complementing the source -count distribution with spatial information. Besides being useful to orient efforts towards multi -messenger and multi -wavelength identification of new -y-ray sources, we expect the results to be especially advantageous for statistical applications such as cross -correlation analyses.
Address [Amerio, Aurelio; Zaldivar, Bryan] Univ Valencia, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: aurelio.amerio@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001194945600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6032
Permanent link to this record
 

 
Author Arina, C.; Di Mauro, M.; Fornengo, N.; Heisig, J.; Jueid, A.; Ruiz de Austri, R.
Title CosmiXs: cosmic messenger spectra for indirect dark matter searches Type Journal Article
Year 2024 Publication Journal of Cosmology And Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue (down) 3 Pages 035 - 41pp
Keywords dark matter experiments; dark matter simulations; dark matter theory
Abstract The energy spectra of particles produced from dark matter (DM) annihilation or decay are one of the fundamental ingredients to calculate the predicted fluxes of cosmic rays and radiation searched for in indirect DM detection. We revisit the calculation of the source spectra for annihilating and decaying DM using the VINCIA shower algorithm in PYTHIA to include QED and QCD final state radiation and diagrams for the EW corrections with massive bosons, not present in the default PYTHIA shower model. We take into account the spin information of the particles during the entire EW shower and the off -shell contributions from massive gauge bosons. Furthermore, we perform a dedicated tuning of the VINCIA and PYTHIA parameters to LEP data on the production of pions, photons, and hyperons at the Z resonance and discuss the underlying uncertainties. To enable the use of our results in DM studies, we provide the tabulated source spectra for the most relevant cosmic messenger particles, namely antiprotons, positrons, gamma rays and the three neutrino flavors, for all the fermionic and bosonic channels and DM masses between 5 GeV and 100 TeV, on github.
Address [Arina, Chiara] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, Chemin Cyclotron 2, B-1348 Louvain La Neuve, Belgium, Email: chiara.arina@uclouvain.be;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001195757300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6041
Permanent link to this record