|   | 
Details
   web
Records
Author LISA Cosmology Working Group (Auclair, P. et al); Figueroa, D.G.
Title Cosmology with the Laser Interferometer Space Antenna Type Journal Article
Year 2023 Publication Living Reviews in Relativity Abbreviated Journal Living Rev. Relativ.
Volume 26 Issue (down) 1 Pages 5 - 254pp
Keywords Laser Interferometer Space Antenna (LISA); Cosmology
Abstract The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universe.
Address [Auclair, Pierre; Caprini, Chiara; Mangiagli, Alberto; Papanikolaou, Theodoros; Pol, Alberto Roper; Steer, Daniele A.; Vennin, Vincent; Petiteau, Antoine] Univ Paris, CNRS, Lab Astroparticule & Cosmol, F-75013 Paris, France, Email: chairscoswg@gmail.com
Corporate Author Thesis
Publisher Springer Int Publ Ag Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2367-3613 ISBN Medium
Area Expedition Conference
Notes WOS:001063967800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5755
Permanent link to this record
 

 
Author Maji, R.; Park, W.I.
Title Supersymmetric U(1)B-L flat direction and NANOGrav 15 year data Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue (down) 1 Pages 015 - 19pp
Keywords Cosmic strings; domain walls; monopoles; cosmological phase transitions; cosmology of theories beyond the SM; gravitational waves / sources
Abstract We show that, when connected with monopoles, the flat D-flat direction breaking the local U(1)B-L symmetry as an extension of the minimal supersymmetric standard model can be responsible for the signal of a stochastic gravitational wave background recently reported by NANOGrav collaborations, while naturally satisfying constraints at high frequency band. Thanks to the flatness of the direction, a phase of thermal inflation arises naturally. The reheating temperature is quite low, and suppresses signals at frequencies higher than the characteristic frequency set by the reheating temperature. Notably, forthcoming spaced based experiments such as LISA can probe the cutoff frequency, providing an indirect clue of the scale of soft SUSY-breaking mass parameter.
Address [Maji, Rinku] Jeonbuk Natl Univ, Dept Phys, Lab Symmetry & Struct Universe, Jeonju 54896, South Korea, Email: rinkumaji9792@gmail.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001147733000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5967
Permanent link to this record
 

 
Author Barenboim, G.; Panotopoulos, G.
Title Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue (down) Pages 011 - 20pp
Keywords Cosmology of Theories beyond the SM; Supersymmetric Standard Model
Abstract The viability of a possible cosmological scenario is investigated. The theoretical framework is the constrained next-to-minimal supersymmetric standard model (cNMSSM), with a gravitino playing the role of the lightest supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest supersymmetric particle (NLSP). All the necessary constraints from colliders and cosmology have been taken into account. For gravitino we have considered the two usual production mechanisms, namely out-of equillibrium decay from the NLSP, and scattering processes from the thermal bath. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determined.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000282370900046 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 256
Permanent link to this record
 

 
Author Borja, E.F.; Garay, I.; Vidotto, F.
Title Learning about Quantum Gravity with a Couple of Nodes Type Journal Article
Year 2012 Publication Symmetry Integrability and Geometry-Methods and Applications Abbreviated Journal Symmetry Integr. Geom.
Volume 8 Issue (down) Pages 015 - 44pp
Keywords discrete gravity; canonical quantization; spinors; spinfoam; quantum cosmology
Abstract Loop Quantum Gravity provides a natural truncation of the infinite degrees of freedom of gravity, obtained by studying the theory on a given finite graph. We review this procedure and we present the construction of the canonical theory on a simple graph, formed by only two nodes. We review the U(N) framework, which provides a powerful tool for the canonical study of this model, and a formulation of the system based on spinors. We consider also the covariant theory, which permits to derive the model from a more complex formulation, paying special attention to the cosmological interpretation of the theory.
Address [Borja, Enrique F.; Garay, Inaki] Univ Erlangen Nurnberg, Inst Theoret Phys 3, D-91058 Erlangen, Germany, Email: efborja@theorie3.physik.uni-erlangen.de;
Corporate Author Thesis
Publisher Natl Acad Sci Ukraine, Inst Math Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1815-0659 ISBN Medium
Area Expedition Conference
Notes WOS:000303831400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1018
Permanent link to this record
 

 
Author Lesgourgues, J.; Pastor, S.
Title Neutrino cosmology and Planck Type Journal Article
Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 16 Issue (down) Pages 065002 - 24pp
Keywords neutrino masses; cosmology; dark matter
Abstract Relic neutrinos play an important role in the evolution of the Universe, modifying some of the cosmological observables. We summarize the main aspects of cosmological neutrinos and describe how the precision of present cosmological data can be used to learn about neutrino properties. In particular, we discuss how cosmology provides information on the absolute scale of neutrino masses, complementary to beta decay and neutrinoless double-beta decay experiments. We explain why the combination of Planck temperature data with measurements of the baryon acoustic oscillation angular scale provides a strong bound on the sum of neutrino masses, 0.23 eV at the 95% confidence level, while the lensing potential spectrum and the cluster mass function measured by Planck are compatible with larger values. We also review the constraints from current data on other neutrino properties. Finally, we describe the very good perspectives from future cosmological measurements, which are expected to be sensitive to neutrino masses close to the minimum values guaranteed by flavour oscillations.
Address [Lesgourgues, Julien] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland, Email: Julien.Lesgourgues@cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000339083500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1854
Permanent link to this record