|   | 
Details
   web
Records
Author Akhmedov, E.; Martinez-Mirave, P.
Title Solar (v(e))over-bar flux: revisiting bounds on neutrino magnetic moments and solar magnetic field Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue (up) 10 Pages 144 - 35pp
Keywords Neutrino Interactions; Neutrino Mixing; Non-Standard Neutrino Properties
Abstract The interaction of neutrino transition magnetic dipole moments with magnetic fields can give rise to the phenomenon of neutrino spin-flavour precession (SFP). For Majorana neutrinos, the combined action of SFP of solar neutrinos and flavour oscillations would manifest itself as a small, yet potentially detectable, flux of electron antineutrinos coming from the Sun. Non-observation of such a flux constrains the product of the neutrino magnetic moment μand the strength of the solar magnetic field B. We derive a simple analytical expression for the expected (v(e)) over bar appearance probability in the three-flavour framework and we use it to revisit the existing experimental bounds on μB. A full numerical calculation has also been performed to check the validity of the analytical result. We also present our numerical results in energy-binned form, convenient for analyses of the data of the current and future experiments searching for the solar (v(e)) over bar flux. In addition, we give a comprehensive compilation of other existing limits on neutrino magnetic moments and of the expressions for the probed effective magnetic moments in terms of the fundamental neutrino magnetic moments and leptonic mixing parameters.
Address [Akhmedov, Evgeny] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: akhmedov@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000871184000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5394
Permanent link to this record
 

 
Author Botella, F.J.; Cornet-Gomez, F.; Miro, C.; Nebot, M.
Title Muon and electron g-2 anomalies in a flavor conserving 2HDM with an oblique view on the CDF M-W value Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue (up) 10 Pages 915 - 25pp
Keywords
Abstract We consider a type I or type X two Higgs doublets model with a modified lepton sector. The generalized lepton sector is also flavor conserving but with the new Yukawa couplings completely decoupled from lepton mass proportionality. The model is one loop stable under renormalization group evolution and it allows to reproduce the g – 2 muon anomaly together with the different scenarios one can consider for the electron g – 2 anomaly, related to the Cesium and/or to the Rubidium recoilmeasurements of the fine structure constant. Thorough parameter space analyses are performed to constrain all the model parameters in the different scenarios, either including or not including the recent CDF measurement of the W boson mass. For light new scalars with masses in the 0.2-1.0 TeV range, the muon anomaly receives dominant one loop contributions; it is for heavy new scalars with masses above 1.2 TeV that two loop Barr-Zee diagrams are needed. The electron g-2 anomaly, if any, must always be obtained with the two loop contributions. The final allowed regions are quite sensitive to the assumptions about perturbativity of Yukawa couplings, which influence unexpected observables like the allowed scalar mass ranges. On that respect, intermediate scalar masses, highly constrained by direct LHC searches, are allowed provided that the new lepton Yukawa couplings are fully scrutinized, including values up to 250 GeV. In the framework of a complete model, fully numerically analysed, we show the implications of the recent M-W measurement.
Address [Botella, Francisco J.; Cornet-Gomez, Fernando; Miro, Carlos; Nebot, Miguel] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Spain, Email: Francisco.J.Botella@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000873885900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5395
Permanent link to this record
 

 
Author Fuster-Martinez, N.; Bruce, R.; Hofer, M.; Persson, T.; Redaelli, S.; Tomas, R.
Title Aperture measurements with ac dipoles and movable collimators in the Large Hadron Collider Type Journal Article
Year 2022 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 25 Issue (up) 10 Pages 101002 - 13pp
Keywords
Abstract This paper presents a first experimental demonstration of a new nondestructive method for aperture measurements based on ac dipoles. In high intensity particle colliders, such as the CERN Large Hadron Collider (LHC), aperture measurements are crucial for a safe operation while optimizing the optics in order to reduce the size of the colliding beams and hence increase the luminosity. In the LHC, this type of measurements became mandatory during beam commissioning and the current method used is based on the destructive blowup of bunches using a transverse damper. The new method presented in this paper uses the ac-dipole excitation to generate adiabatic forced oscillations of the beam in order to create losses to identify the smallest aperture in the machine without blowing up the beam emittance. A precise and tuneable control of the oscillation amplitude enables the beams to be reused for several aperture measurements, as well as for other subsequent commissioning activities. Measurements performed with the new method are presented and compared with the current LHC transverse damper method for two different beam energies and two different operational optics.
Address [Fuster-Martinez, N.] CSIC UV, Inst Fis Corpuscular, Valencia 46908, Spain, Email: nuria.fuster@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000875736400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5397
Permanent link to this record
 

 
Author Olmo, G.J.; Orazi, E.; Pradisi, G.
Title Conformal metric-affine gravities Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue (up) 10 Pages 057 - 21pp
Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity
Abstract We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symmetry of a large class of geometric gravity theories, introducing a compensator dilaton field that naturally gives rise to a Stuckelberg sector where a spontaneous breaking mechanism of the conformal symmetry is at work to generate a mass scale for the gauge field. For Ricci-based gravities that include, among others, General Relativity, f(R) and f(R, R μnu R μnu) theories and the EiBI model, we prove that the on-shell gauge vector associated to the scaling symmetry can be identified with the torsion vector, thus recovering and generalizing conformal invariant theories in the Riemann-Cartan formalism, already present in the literature.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000878259300018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5405
Permanent link to this record
 

 
Author Bernal, N.; Munoz-Albornoz, V.; Palomares-Ruiz, S.; Villanueva-Domingo, P.
Title Current and future neutrino limits on the abundance of primordial black holes Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue (up) 10 Pages 068 - 38pp
Keywords neutrino detectors; primordial black holes
Abstract Primordial black holes (PBHs) formed in the early Universe are sources of neutrinos emitted via Hawking radiation. Such astrophysical neutrinos could be detected at Earth and constraints on the abundance of comet-mass PBHs could be derived from the null observation of this neutrino flux. Here, we consider non-rotating PBHs and improve constraints using Super-Kamiokande neutrino data, as well as we perform forecasts for next-generation neutrino (Hyper-Kamiokande, JUNO, DUNE) and dark matter (DARWIN, ARGO) detectors, which we compare. For PBHs less massive than " few x 1014 g, PBHs would have already evaporated by now, whereas more massive PBHs would still be present and would constitute a fraction of the dark matter of the Universe. We consider monochromatic and extended (log-normal) mass distributions, and a PBH mass range spanning from 1012 g to ti 1016 g. Finally, we also compare our results with previous ones in the literature.
Address [Bernal, Nicolas] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates, Email: nicolas.bernal@uan.edu.co;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000882783900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5412
Permanent link to this record