toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Feijoo, A.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title (DD0)-D-0 pi(+) mass distribution in the production of the T-cc exotic state Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue (up) 11 Pages 114015 - 7pp  
  Keywords  
  Abstract We perform a unitary coupled channel study of the interaction of the D*D-+(0), D*D-0(+) channels and find a state barely bound, very close to isospin I = 0. We take the experimental mass as input and obtain the width of the state and the (DD0 pi-)-D-0+ mass distribution. When the mass of the T-cc state quoted in the experimental paper from raw data is used, the width obtained is of the order of the 80 keV, small compared to the value given in that work. Yet, when the mass obtained in an analysis of the data considering the experimental resolution is taken, the width obtained is about 43 keV and both the width and the (DD0 pi+)-D-0 mass distribution are in remarkable agreement with the results obtained in that latter analysis.  
  Address [Feijoo, A.; Oset, Eulogio] Ctr Mixto Univ Valencia, Dept Fsica Teor, CSIC, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000734578400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5066  
Permanent link to this record
 

 
Author Feijoo, A.; Molina, R.; Dai, L.R.; Oset, E. url  doi
openurl 
  Title Lambda(1405) mediated triangle singularity in the K(-)d -> p Sigma(-) reaction Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue (up) 11 Pages 1028 - 16pp  
  Keywords  
  Abstract We study for the first time the p Sigma(-) -> K- d and K- d -> p Sigma(-) reactions close to threshold and show that they are driven by a triangle mechanism, with the Lambda(1405), a proton and a neutron as intermediate states, which develops a triangle singularity close to the (K) over bard threshold. We find that a mechanism involving virtual pion exchange and the K- p -> pi(+)Sigma(-) amplitude dominates over another one involving kaon exchange and the K- p -> K- p amplitude. Moreover, of the two Lambda(1405) states, the one with higher mass around 1420 MeV, gives the largest contribution to the process. We show that the cross section, well within measurable range, is very sensitive to different models that, while reproducing (K) over barN observables above threshold, provide different extrapolations of the (K) over barN amplitudes below threshold. The observables of this reaction will provide new constraints on the theoretical models, leading to more reliable extrapolations of the (K) over barN amplitudes below threshold and to more accurate predictions of the Lambda(1405) state of lower mass.  
  Address [Feijoo, A.; Molina, R.; Oset, Eulogio] Univ Valencia, Dept Fis Teor, Inst Invest Paterna, CSIC,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000884904400008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5417  
Permanent link to this record
 

 
Author Wang, W.F.; Feijoo, A.; Song, J.; Oset, E. url  doi
openurl 
  Title Molecular Omega(ce), Omega(bb), and Omega(bc) states Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue (up) 11 Pages 116004 - 14pp  
  Keywords  
  Abstract We study the interaction of meson-baryon coupled channels carrying quantum numbers of a Omega(ce), Omega(bb), and Omega(bc) presently under investigation by the LHCb Collaboration. The interaction is obtained from an extension of the local hidden gauge approach to the heavy quark sector that has proved to provide accurate results compared to experiment in the case of Omega(c), Xi(c) states and pentaquarks, P-c and P-cs. We obtain many bound states, with small decay widths within the space of the chosen coupled channels. The spin-parity of the states are J(P) = 1/2(-) for coupled channels of pseudoscalar-baryon (1/2(+)), J(P) = 3/2(-) for the case of pseudoscalar-baryon (3/2(+)), J(P) = 1/2(-), 3/2(-) for the case of vector-baryon (1/2(+)) and J(P) = 1/2(-), 3/2(-). 5/2(-) for the vector- baryon (3/2(+)) channels. We look for poles of the states and evaluate the couplings to the different channels. The couplings obtained for the open channels can serve as a guide to see in which reaction the obtained states are more likely to be observed.  
  Address [Wang, W. F.] Shanxi Univ, Inst Theoret Phys, Taiyuan 030006, Shanxi, Peoples R China, Email: wfwang@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898923400009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5453  
Permanent link to this record
 

 
Author Song, J.; Dai, L.R.; Oset, E. url  doi
openurl 
  Title Evolution of compact states to molecular ones with coupled channels: The case of the X(3872) Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue (up) 11 Pages 114017 - 11pp  
  Keywords  
  Abstract We study the molecular probability of the X(3872) in the D0 over bar D*0 and D+D*- channels in several scenarios. One of them assumes that the state is purely due to a genuine nonmolecular component. However, it gets unavoidably dressed by the meson components to the point that in the limit of zero binding of the D0 over bar D*0 component becomes purely molecular. Yet, the small but finite binding allows for a nonmolecular state when the bare mass of the genuine state approaches the D0 over bar D*0 threshold, but, in this case the system develops a small scattering length and a huge effective range for this channel in flagrant disagreement with present values of these magnitudes. Next we discuss the possibility to have hybrid states stemming from the combined effect of a genuine state and a reasonable direct interaction between the meson components, where we find cases in which the scattering length and effective range are still compatible with data, but even then the molecular probability is as big as 95%. Finally, we perform the calculations when the binding stems purely from the direct interaction between the meson-meson components. In summary we conclude, that while present data definitely rule out the possibility of a dominant nonmolecular component, the precise value of the molecular probability requires a more precise determination of the scattering length and effective range of the D0 over bar D*0 channel, as well as the measurement of these magnitudes for the D+D*- channel which have not been determined experimentally so far.  
  Address [Song, Jing] Beihang Univ, Sch Phys, Beijing 102206, Peoples R China, Email: Song-Jing@buaa.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001134845500013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5963  
Permanent link to this record
 

 
Author Liang, W.H.; Xie, J.J.; Oset, E. url  doi
openurl 
  Title (B)over-bar(0), B- and (B)over-bar(S)(0) decays into J/psi and K (K)over-bar or pi eta Type Journal Article
  Year 2015 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 75 Issue (up) 12 Pages 609 - 8pp  
  Keywords  
  Abstract We study the (B) over bar (0)(S) -> J/psi K+ K-, (B) over bar (0) -> J/psi K+ K, B- -> J/psi K+ K-, (B) over bar (0) -> J/psi pi(0)eta(-), decays and compare their mass distributions with those obtained for the (B) over bar (0)(S) -> J/psi pi(+) pi(-) and (B) over bar (0)(S) -> J/psi pi(+)pi(-). The approach followed consist in a factorization of the weak part and the hadronization part into a factor which is common to all the processes. Then what makes the reactions different are some trivial CabibboKobayashi- Maskawa matrix elements and the weight by which the different pairs of mesons appear in a primary step plus their final state interaction. These elements are part of the theory and thus, up to a global normalization factor, all the invariant mass distributions are predicted with no free parameters. Comparison is made with the limited experimental information available. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the meson- meson interaction and the nature of the low lying scalar meson resonances, f(0)(500), f(0)( 980) and a(0)(980).  
  Address [Liang, Wei-Hong] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: liangwh@mailbox.gxnu.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367404000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2514  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva