toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Shadows and optical appearance of black bounces illuminated by a thin accretion disk Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue (down) 8 Pages 036 - 19pp  
  Keywords GR black holes; Wormholes; modified gravity; accretion  
  Abstract We study the light rings and shadows of an uniparametric family of spherically symmetric geometries interpolating between the Schwarzschild solution, a regular black hole, and a traversable wormhole, and dubbed as black bounces, all of them sharing the same critical impact parameter. We consider the ray-tracing method in order to study the impact parameter regions corresponding to the direct, lensed, and photon ring emissions, finding a broadening of all these regions for black bounce solutions as compared to the Schwarzschild one. Using this, we determine the optical appearance of black bounces when illuminated by three standard toy models of optically and geometrically thin accretion disks viewed in face-on orientation.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000686656000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4943  
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Light ring images of double photon spheres in black hole and wormhole spacetimes Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue (down) 8 Pages 084057 - 16pp  
  Keywords  
  Abstract The silhouette of a black hole having a critical curve (an unstable bound photon orbit) when illuminated by an optically thin accretion disk whose emission is confined to the equatorial plane shows a distinctive central brightness depression (the shadow) whose outer edge consists of a series of strongly lensed, selfsimilar rings superimposed with the disk???s direct emission. While the size and shape of the critical curve depend only on the background geometry, the pattern of bright and dark regions (including the size and depth of the shadow itself) in the image is strongly influenced by the (astro)physics of the accretion disk. This aspect makes it difficult to extract clean and clear observational discriminators between the Kerr black hole and other compact objects. In the presence of a second critical curve, however, observational differences become apparent. In this work we shall consider some spherically symmetric black hole and wormhole geometries characterized by the presence of a second critical curve, via a uniparametric family of extensions of the Schwarzschild metric. By assuming three toy models of geometrically thin accretion disks, we show the presence of additional light rings in the intermediate region between the two critical curves. The observation of such rings could represent a compelling evidence for the existence of black hole mimickers having multiple critical curves.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000810908800018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5261  
Permanent link to this record
 

 
Author Afonso, V.I.; Bejarano, C.; Ferraro, R.; Olmo, G.J. url  doi
openurl 
  Title Determinantal Born-Infeld coupling of gravity and electromagnetism Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue (down) 8 Pages 084067 - 11pp  
  Keywords  
  Abstract We study a Born-Infeld inspired model of gravity and electromagnetism in which both types of fields are treated on an equal footing via a determinantal approach in a metric-aft me formulation. Though this formulation is a priori in conflict with the postulates of metric theories of gravity, we find that the resulting equations can also be obtained from an action combining the Einstein-Hilbert action with a minimally coupled nonlinear electrodynamics. As an example, the dynamics is solved for the charged static black hole.  
  Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000810510200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5273  
Permanent link to this record
 

 
Author Dias da Silva, L.F.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Photon rings as tests for alternative spherically symmetric geometries with thin accretion disks Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue (down) 8 Pages 084055 - 18pp  
  Keywords  
  Abstract The imaging by the Event Horizon Telescope (EHT) of the supermassive central objects at the heart of the M87 and Milky Way (Sgr A*) galaxies, has marked the first step into peering at the photon rings and central brightness depression that characterize the optical appearance of black holes surrounded by an accretion disk. Recently, Vagnozzi et al. [arXiv:2205.07787] used the claim by the EHT that the size of the shadow of Sgr A* can be inferred by calibrated measurements of the bright ring enclosing it, to constrain a large number of spherically symmetric space-time geometries. In this work we use this result to study some features of the first and second photon rings of a restricted pool of such geometries in thin accretion disk settings. The emission profile of the latter is described by calling upon three analytic samples belonging to the family introduced by Gralla, Lupsasca, and Marrone, in order to characterize such photon rings using the Lyapunov exponent of nearly bound orbits and discuss its correlation with the luminosity extinction rate between the first and second photon rings. We finally elaborate on the chances of using such photon rings as observational discriminators of alternative black hole geometries using very long baseline interferometry.  
  Address [Dias da Silva, Luis F.; Lobo, Francisco S. N.] Univ Lisbon, Inst Astrofis & Ciencias Espaco, Fac Ciencias, Edificio C8, P-1749016 Lisbon, Portugal, Email: fc53497@alunos.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001093442700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5779  
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title The virial theorem and the dark matter problem in hybrid metric-Palatini gravity Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue (down) 7 Pages 024 - 19pp  
  Keywords modified gravity; dark matter theory; galaxy clusters  
  Abstract Hybrid metric-Palatini gravity is a recently proposed theory, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory predicts the existence of a long-range scalar field, which passes the Solar System observational constraints, even if the scalar field is very light, and modifies the cosmological and galactic dynamics. Thus, the theory opens new possibilities to approach, in the same theoretical framework, the problems of both dark energy and dark matter. In this work, we consider the generalized virial theorem in the scalar-tensor representation of the hybrid metric-Palatini gravity. More specifically, taking into account the relativistic collisionless Boltzmann equation, we show that the supplementary geometric terms in the gravitational field equations provide an effective contribution to the gravitational potential energy. We show that the total virial mass is proportional to the effective mass associated with the new terms generated by the effective scalar field, and the baryonic mass. In addition to this, we also consider astrophysical applications of the model and show that the model predicts that the mass associated to the scalar field and its effects extend beyond the virial radius of the clusters of galaxies. In the context of the galaxy cluster velocity dispersion profiles predicted by the hybrid metric-Palatini model, the generalized virial theorem can be an efficient tool in observationally testing the viability of this class of generalized gravity models.  
  Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy, Email: capozzie@na.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322582000025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1531  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Semiclassical geons as solitonic black hole remnants Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue (down) 7 Pages 011 - 10pp  
  Keywords modified gravity; primordial black holes; Wormholes; quantum field theory on curved space  
  Abstract We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322582000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1532  
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Olmo, G.J. url  doi
openurl 
  Title Novel connection between lump-like structures and quantum mechanics Type Journal Article
  Year 2018 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 133 Issue (down) 7 Pages 251 - 10pp  
  Keywords  
  Abstract This work deals with lump-like structures in models described by a single real scalar field in two-dimensional spacetime. We start with a model that supports lump-like configurations and use the deformation procedure to construct scalar field theories that support both lumps and kinks, with the corresponding stability investigation giving rise to new physical systems. Very interestingly, we find models that support stable topological solutions, with the stability potential being able to support a tower of non-negative bound states, generating distinct families of potentials of current interest to quantum mechanics. We also describe models where the lump-like solutions give rise to stability potentials that have the shape of a double well.  
  Address [Bazeia, D.; Losano, L.] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, PB, Brazil, Email: bazeia@fisica.ufpb.br  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000439341000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3670  
Permanent link to this record
 

 
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title Rotating black holes in Eddington-inspired Born-Infeld gravity: an exact solution Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue (down) 7 Pages 058 - 31pp  
  Keywords modified gravity; GR black holes; Wormholes  
  Abstract We find an exact, rotating charged black hole solution within Eddington-inspired Born-Infeld gravity. To this end we employ a recently developed correspondence or mapping between modified gravity models built as scalars out of contractions of the metric with the Ricci tensor, and formulated in metric-affine spaces (Ricci-Based Gravity theories) and General Relativity. This way, starting from the Kerr-Newman solution, we show that this mapping bring us the axisymmetric solutions of Eddington-inspired Born-Infeld gravity coupled to a certain model of non-linear electrodynamics. We discuss the most relevant physical features of the solutions obtained this way, both in the spherically symmetric limit and in the fully rotating regime. Moreover, we further elaborate on the potential impact of this important technical progress for bringing closer the predictions of modified gravity with the astrophysical observations of compact objects and gravitational wave astronomy.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609085900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4682  
Permanent link to this record
 

 
Author Delhom, A.; Mariz, T.; Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J. url  doi
openurl 
  Title Spontaneous Lorentz symmetry breaking and one-loop effective action in the metric-affine bumblebee gravity Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue (down) 7 Pages 018 - 27pp  
  Keywords gravity; modified gravity; quantum field theory on curved space; Quantum fields in curved spacetimes  
  Abstract The metric-affine bumblebee model in the presence of fermionic matter minimally coupled to the connection is studied. We show that the model admits an Einstein frame representation in which the matter sector is described by a non-minimal Dirac action without any analogy in the literature. Such non-minimal terms involve unconventional couplings between the bumblebee and the fermion field. We then rewrite the quadratic fermion action in the Einstein frame in the basis of 16 Dirac matrices in order to identify the coefficients for Lorentz/CPT violation in all orders of the non-minimal coupling xi. The exact result for the fermionic determinant in the Einstein frame, including all orders in xi, is also provided. We demonstrate that the axial contributions are at least of second order in the perturbative expansion of xi. Furthermore, we compute the one-loop effective potential within the weak field approximation.  
  Address [Delhom, Adria] Univ Tartu, Inst Phys, Lab Theoret Phys, W Ostwaldi 1, EE-50411 Tartu, Estonia, Email: adria.delhom@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000834157900011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5314  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Microscopic wormholes and the geometry of entanglement Type Journal Article
  Year 2014 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 74 Issue (down) 6 Pages 2924 - 5pp  
  Keywords  
  Abstract It has recently been suggested that Einstein-Rosen (ER) bridges can be interpreted as maximally entangled states of two black holes that form a complex Einstein-Podolsky-Rosen (EPR) pair. This relationship has been dubbed as the correlation. In this work, we consider the latter conjecture in the context of quadratic Palatini theory. An important result, which stems from the underlying assumptions as regards the geometry on which the theory is constructed, is the fact that all the charged solutions of the quadratic Palatini theory possess a wormhole structure. Our results show that spacetime may have a foam-like microstructure with wormholes generated by fluctuations of the quantum vacuum. This involves the spontaneous creation/annihilation of entangled particle-antiparticle pairs, existing in a maximally entangled state connected by a non-traversable wormhole. Since the particles are produced from the vacuum and therefore exist in a singlet state, they are necessarily entangled with one another. This gives further support to the claim.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000337027100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1814  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva