toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cepedello, R.; Hirsch, M.; Helo, J.C. url  doi
openurl 
  Title Lepton number violating phenomenology of d=7 neutrino mass models Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue (up) 1 Pages 009 - 24pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We study the phenomenology of d = 7 1-loop neutrino mass models. All models in this particular class require the existence of several new SU(2)(L) multiplets, both scalar and fermionic, and thus predict a rich phenomenology at the LHC. The observed neutrino masses and mixings can easily be fitted in these models. Interestingly, despite the smallness of the observed neutrino masses, some particular lepton number violating (LNV) final states can arise with observable branching ratios. These LNV final states consists of leptons and gauge bosons with high multiplicities, such as 4/ + 4W, 6/ + 2W etc. We study current constraints on these models from upper bounds on charged lepton flavour violating decays, existing lepton number conserving searches at the LHC and discuss possible future LNV searches.  
  Address [Cepedello, R.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000419113900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3443  
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title Delta L >= 4 lepton number violating processes Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue (up) 1 Pages 015035 - 12pp  
  Keywords  
  Abstract We discuss the experimental prospects for observing processes which violate lepton number (Delta L) in four units ( or more). First, we reconsider neutrinoless quadruple beta decay, deriving a model independent and very conservative lower limit on its half- life of the order of 10(41) ys for Nd-150. This renders quadruple beta decay unobservable for any feasible experiment. We then turn to a more general discussion of different possible low-energy processes with values Delta L >= 4. A simple operator analysis leads to rather pessimistic conclusions about the observability at low-energy experiments in all cases we study. However, the situation looks much brighter for accelerator experiments. For two example models with Delta L = 4 and another one with Delta L = 5, we show how the LHC or a hypothetical future pp collider, such as the FCC, could probe multilepton number violating operators at the TeV scale.  
  Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Spain Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000439791500005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3675  
Permanent link to this record
 

 
Author Beltran, R.; Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S. url  doi
openurl 
  Title Long-lived heavy neutral leptons at the LHC: four-fermion single-N-R operators Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue (up) 1 Pages 044 - 18pp  
  Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics  
  Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the N-R SMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the N-R SMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.  
  Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Apartado 22085, E-46071 Valencia, Spain, Email: rebeca.beltran@ifis.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000742012500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5079  
Permanent link to this record
 

 
Author Escribano, P.; Hirsch, M.; Nava, J.; Vicente, A. url  doi
openurl 
  Title Observable flavor violation from spontaneous lepton number breaking Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue (up) 1 Pages 098 - 31pp  
  Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries  
  Abstract We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as μ-> e J, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous (g – 2)(mu), in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon g – 2 anomaly would lead to tension with recent astrophysical bounds on the majoron coupling to muons.  
  Address [Escribano, Pablo; Hirsch, Martin; Nava, Jacopo; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrcit Jose Beltrcin 2, E-46980 Valencia, Spain, Email: pablo.escribano@ifis.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000744514600003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5084  
Permanent link to this record
 

 
Author Beltran, R.; Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S. url  doi
openurl 
  Title Long-lived heavy neutral leptons from mesons in effective field theory Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue (up) 1 Pages 015 - 38pp  
  Keywords New Light Particles; SMEFT; Sterile or Heavy Neutrinos  
  Abstract In the framework of the low-energy effective field theory of the Standard Model extended with heavy neutral leptons (HNLs), we calculate the production rates of HNLs from meson decays triggered by dimension-six operators. We consider both lepton number-conserving and lepton-number-violating four-fermion operators involving either a pair of HNLs or a single HNL. Assuming that HNLs are long-lived, we perform simulations and investigate the reach of the proposed far detectors at the high-luminosity LHC to (i) active-heavy neutrino mixing and (ii) the Wilson coefficients associated with the effective operators, for HNL masses below the mass of the B-meson. We further convert the latter to the associated new-physics scales. Our results show that scales in excess of hundreds of TeV and the active-heavy mixing squared as small as 10(-15 )can be probed by these experiments.  
  Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Apartado 22085, E-46071 Valencia, Spain, Email: rebeca.beltran@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000909520000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5455  
Permanent link to this record
 

 
Author Hirsch, M.; Lineros, R.A.; Morisi, S.; Palacio, J.; Rojas, N.; Valle, J.W.F. url  doi
openurl 
  Title WIMP dark matter as radiative neutrino mass messenger Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue (up) 10 Pages 149 - 18pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics  
  Abstract The minimal seesaw extension of the Standard SU(3)(c)circle times SU(2)(L)circle times U(1)(Y) Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2)(L). These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle (WIMP) dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it also detectable at present and near future collider experiments.  
  Address [Hirsch, M.; Lineros, R. A.; Palacio, J.; Valle, J. W. F.] Univ Valencia, Edificio Inst Paterna, CSIC, Inst Fis Corpuscular,AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326047200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1623  
Permanent link to this record
 

 
Author Anamiati, G.; Hirsch, M.; Nardi, E. url  doi
openurl 
  Title Quasi-Dirac neutrinos at the LHC Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue (up) 10 Pages 010 - 19pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract Lepton number violation is searched for at the LHC using same-sign leptons plus jets. The standard lore is that the ratio of same-sign lepton to opposite-sign lepton events, R-ll, is equal to R-ll = 1 (R-ll = 0) for Majorana (Dirac) neutrinos. We clarify under which conditions the ratio Rll can assume values different from 0 and 1, and we argue that the precise value 0 < R-ll < 1 is controlled by the mass splitting versus the width of the quasi-Dirac resonances. A measurement of R-ll not equal 0, 1 would then contain valuable information about the origin of neutrino masses. We consider as an example the inverse seesaw mechanism in a left-right symmetric scenario, which is phenomenologically particularly interesting since all the heavy states in the high energy completion of the model could be within experimental reach. A prediction of this scenario is a correlation between the values of R-ll and the ratio between the rates for heavy neutrino decays into standard model gauge bosons, and into three body final states ljj mediated by off-shell W-R exchange.  
  Address [Anamiati, G.; Hirsch, M.] Univ Valencia, AHEP Grp, CSIC, Inst Fis Corpuscular, Edificio Inst Invest,Parc Cient Paterna, E-46071 Valencia, Spain, Email: anamiati@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000385397800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2834  
Permanent link to this record
 

 
Author Cepedello, R.; Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title Systematic classification of three-loop realizations of the Weinberg operator Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue (up) 10 Pages 197 - 34pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We study systematically the decomposition of the Weinberg operator at three-loop order. There are more than four thousand connected topologies. However, the vast majority of these are infinite corrections to lower order neutrino mass diagrams and only a very small percentage yields models for which the three-loop diagrams are the leading order contribution to the neutrino mass matrix. We identify 73 topologies that can lead to genuine three-loop models with fermions and scalars, i.e. models for which lower order diagrams are automatically absent without the need to invoke additional symmetries. The 73 genuine topologies can be divided into two sub-classes: normal genuine ones (44 cases) and special genuine topologies (29 cases). The latter are a special class of topologies, which can lead to genuine diagrams only for very specific choices of fields. The genuine topologies generate 374 diagrams in the weak basis, which can be reduced to only 30 distinct diagrams in the mass eigenstate basis. We also discuss how all the mass eigenstate diagrams can be described in terms of only five master integrals. We present some concrete models and for two of them we give numerical estimates for the typical size of neutrino masses they generate. Our results can be readily applied to construct other d = 5 neutrino mass models with three loops.  
  Address [Cepedello, Ricardo; Hirsch, Martin] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000449260800013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3792  
Permanent link to this record
 

 
Author Hirsch, M.; Morisi, S.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Discrete dark matter Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue (up) 11 Pages 116003 - 5pp  
  Keywords  
  Abstract We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-Abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z(2) subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while theta(13) = 0 gives no CP violation in neutrino oscillations.  
  Address [Hirsch, M.; Morisi, S.; Peinado, E.; Vallex, J. W. F.] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286565700007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 521  
Permanent link to this record
 

 
Author Hirsch, M.; Staub, F.; Vicente, A. url  doi
openurl 
  Title Enhancing l(i) -> 3l(j) with the Z(0)-penguin Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue (up) 11 Pages 113013 - 5pp  
  Keywords  
  Abstract Lepton flavor violation has been observed in neutrino oscillations. For charged lepton flavor violation decays only upper limits are known, but sizable branching ratios are expected in many neutrino mass models. High-scale models, such as the classical supersymmetric seesaw, usually predict that decays l(i) -> 3l(j) are roughly a factor alpha smaller than the corresponding decays l(i) -> l(j)gamma. Here we demonstrate that the Z(0)-penguin diagram can give an enhancement for decays l(i) -> 3l(j) in many extensions of the minimal supersymmetric standard model (MSSM). We first discuss why the Z(0)-penguin is not dominant in the MSSM with seesaw and show that much larger contributions from the Z(0)-penguin are expected in general. We then demonstrate the effect numerically in two example models, namely, the supersymmetric inverse seesaw and R-parity violating supersymmetry.  
  Address [Hirsch, M.] Univ Valencia Edificio Inst Paterna, CSIC, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305680800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1075  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva