|   | 
Details
   web
Records
Author Filipuzzi, A.; Portoles, J.; Gonzalez-Alonso, M.
Title U(2)^5 flavor symmetry and lepton universality violation in W -> tau(nu)over-bar(tau) Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue (down) 11 Pages 116010 - 10pp
Keywords
Abstract The seeming violation of universality in the tau lepton coupling to the W boson suggested by LEP-II data is studied using an effective field theory (EFT) approach. Within this framework we explore how this feature fits into the current constraints from electroweak precision observables using different assumptions about the flavor structure of New Physics, namely [U(2) x U(1)](5) and U(2)(5). We show the importance of leptonic and semileptonic tau decay measurements, giving 3-4 TeV bounds on the New Physics effective scale at 90% C.L. We conclude under very general assumptions that it is not possible to accommodate this deviation from universality in the EFT framework, and thus such a signal could only be explained by the introduction of light degrees of freedom or New Physics strongly coupled at the electroweak scale.
Address [Filipuzzi, Alberto; Portoles, Jorge] CSIC Univ Valencia, IFIC, Dept Fis Teor, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000305680800020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1074
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Tabrizi, Z.
Title Consistent QFT description of non-standard neutrino interactions Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue (down) 11 Pages 048 - 23pp
Keywords Effective Field Theories; Neutrino Physics
Abstract Neutrino oscillations are precision probes of new physics. Apart from neutrino masses and mixings, they are also sensitive to possible deviations of low-energy interactions between quarks and leptons from the Standard Model predictions. In this paper we develop a systematic description of such non-standard interactions (NSI) in oscillation experiments within the quantum field theory framework. We calculate the event rate and oscillation probability in the presence of general NSI, starting from the effective field theory (EFT) in which new physics modifies the flavor or Lorentz structure of charged-current interactions between leptons and quarks. We also provide the matching between the EFT Wilson coefficients and the widely used simplified quantum-mechanical approach, where new physics is encoded in a set of production and detection NSI parameters. Finally, we discuss the consistency conditions for the standard NSI approach to correctly reproduce the quantum field theory result.
Address [Falkowski, Adam] Univ Paris Saclay, CNRS IN2P3, IJCLab, F-91405 Orsay, France, Email: adam.falkowski@th.u-psud.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000593911400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4623
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Kopp, J.; Soreq, Y.; Tabrizi, Z.
Title EFT at FASER nu Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue (down) 10 Pages 086 - 46pp
Keywords Effective Field Theories; Neutrino Physics
Abstract We investigate the sensitivity of the FASER nu detector to new physics in the form of non-standard neutrino interactions. FASER nu, which will be installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism – which is applicable to any current and future neutrino experiment – is based on the Standard Model Effective Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER nu will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER nu constraints will become comparable to existing limits – some of them derived for the first time in this paper – already with 150 fb(-1) of data.
Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: afalkows017@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000707348700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5002
Permanent link to this record
 

 
Author Cirigliano, V.; Jenkins, J.P.; Gonzalez-Alonso, M.
Title Semileptonic decays of light quarks beyond the Standard Model Type Journal Article
Year 2010 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 830 Issue (down) 1-2 Pages 95-115
Keywords Semileptonic decays; CKM unitarity; Effective theory; Beyond the Standard Model
Abstract We describe non-standard contributions to semileptonic processes in a model independent way in terms of in SU(2)(L) x U(1)(Y) invariant effective lagrangian at the weak scale, front which we derive the low-energy effective lagrangian governing muon and beta decays. We find that the deviation from Cabibbo universality, Delta(CKM) equivalent to vertical bar V-ud vertical bar(2) + vertical bar V-us vertical bar(2) + vertical bar V-ub vertical bar(2) – 1, receives contributions from four effective operators. The phenomenological bound Delta(CKM) = (-1 +/- 6) x 10(-4) provides strong constraints on all four operators, corresponding to art effective scale Lambda > 11 TeV (90% CL). Depending on the operator, this constraint is at the same level or better then the Z pole observables. Conversely, precision electroweak constraints alone would allow universality violations as large as Delta(CKM) = -0.01 (90% CL). An observed Delta(CKM) not equal 0 at this level Could be explained in terms of a single four-fermion operator which is relatively poorly constrained by electroweak precision measurements.
Address [Cirigliano, Vincenzo; Jenkins, James P.; Gonzalez-Alonso, Martin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA, Email: cirigliano@lanl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes ISI:000275150000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 497
Permanent link to this record
 

 
Author Gonzalez-Alonso, M.; Pich, A.; Prades, J.
Title Pinched weights and duality violation in QCD sum rules: A critical analysis Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue (down) 1 Pages 014019 - 7pp
Keywords
Abstract We analyze the so-called pinched weights, that are generally thought to reduce the violation of quarkhadron duality in finite-energy sum rules. After showing how this is not true in general, we explain how to address this question for the left-right correlator and any particular pinched weight, taking advantage of our previous work [1], where the possible high-energy behavior of the left-right spectral function was studied. In particular, we show that the use of pinched weights allows to determine with high accuracy the dimension six and eight contributions in the operator-product expansion, O-6 = (-4.3(-0.7)(+0.9)) x 10(-3) GeV6 and O-8 = (-7.2(-5.3)(+4.2)) x 10(-3) GeV8.
Address [Gonzalez-Alonso, Martin; Pich, Antonio] Univ Valencia, CSIC, Dept Fis Teor, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000280470200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 403
Permanent link to this record
 

 
Author Gonzalez-Alonso, M.; Pich, A.; Rodriguez-Sanchez, A.
Title Updated determination of chiral couplings and vacuum condensates from hadronic tau decay data Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue (down) 1 Pages 014017 - 14pp
Keywords
Abstract We analyze the lowest spectral moments of the left-right two-point correlation function, using all known short-distance constraints and the recently updated ALEPH V – A spectral function from tau decays. This information is used to determine the low-energy couplings L-10 and C-87 of chiral perturbation theory and the lowest-dimensional contributions to the operator product expansion of the left-right correlator. A detailed statistical analysis is implemented to assess the theoretical uncertainties, including violations of quark-hadron duality.
Address [Gonzalez-Alonso, Martin] CNRS, IPN Lyon, F-69622 Villeurbanne, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000379653200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2755
Permanent link to this record
 

 
Author Abele, H. et al; Algora, A.; Gonzalez-Alonso, M.; Novella, P.
Title Particle physics at the European Spallation Source Type Journal Article
Year 2023 Publication Physics Reports Abbreviated Journal Phys. Rep.
Volume 1023 Issue (down) Pages 1-84
Keywords ESS; Neutrons; NNBAR; ESSnuSB; nEDM
Abstract Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
Address [Fynbo, H. O. U.; Uggerhoj, U. I.] Aarhus Univ, Dept Phys & Astron, Aarhus, Denmark, Email: milstead@fysik.su.se
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1573 ISBN Medium
Area Expedition Conference
Notes WOS:001063474900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5685
Permanent link to this record