|   | 
Details
   web
Records
Author PANDA Collaboration (Davi, F. et al); Diaz, J.
Title Technical design report for the endcap disc DIRC Type Journal Article
Year 2022 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 49 Issue (up) 12 Pages 120501 - 128pp
Keywords technical design report; particle identification; Cherenkov detector; PANDA
Abstract PANDA (anti-proton annihiliation at Darmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c. PANDA is designed to reach a maximum luminosity of 2 x 10(32) cm(-2) s. Most of the physics programs require an excellent particle identification (PID). The PID of hadronic states at the forward endcap of the target spectrometer will be done by a fast and compact Cherenkov detector that uses the detection of internally reflected Cherenkov light (DIRC) principle. It is designed to cover the polar angle range from 5 degrees to 22 degrees and to provide a separation power for the separation of charged pions and kaons up to 3 standard deviations (s.d.) for particle momenta up to 4 GeV/c in order to cover the important particle phase space. This document describes the technical design and the expected performance of the novel PANDA disc DIRC detector that has not been used in any other high energy physics experiment before. The performance has been studied with Monte-Carlo simulations and various beam tests at DESY and CERN. The final design meets all PANDA requirements and guarantees sufficient safety margins.
Address [Davi, F.] Univ Politecn Marche Ancona, Ancona, Italy, Email: muschmidt@uni-wuppertal.de
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000928188400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5476
Permanent link to this record
 

 
Author Ankowski, A.M. et al; Alvarez-Ruso, L.
Title Electron scattering and neutrino physics Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue (up) 12 Pages 120501 - 34pp
Keywords neutrino oscillation; CEvNS; PVES; electron scattering; neutrino scattering
Abstract A thorough understanding of neutrino-nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino-nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments-both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program-and could well be the difference between achieving or missing discovery level precision. To this end, electron-nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino-nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino-nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.
Address [Ankowski, A. M.; Friedland, A.; Butti, P.; Toro, N.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: mahn@msu.edu;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:001086874300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5748
Permanent link to this record
 

 
Author Abdullahi, A.M. et al; Lopez-Pavon, J.
Title The present and future status of heavy neutral leptons Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue (up) 2 Pages 020501 - 100pp
Keywords Neutrinos; beyond the standard model; sterile neutrinos
Abstract The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.
Address [Abdullahi, Asli M.; Plestid, Ryan] Fermilab Natl Accelerator Lab, Theoret Phys Dept, POB 500, Batavia, IL 60510 USA, Email: shoemaker@vt.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000918351600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5486
Permanent link to this record
 

 
Author Botella, F.J.; Cornet-Gomez, F.; Miro, C.; Nebot, M.
Title New physics hints from τ scalar interactions and (g-2)e,μ Type Journal Article
Year 2024 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 51 Issue (up) 2 Pages 025001 - 20pp
Keywords lepton sector; extended scalar sector; new physics signals
Abstract We consider a flavour conserving two Higgs doublet model that consists of a type I (or X) quark sector and a generalized lepton sector where the Yukawa couplings of the charged leptons to the new scalars are not proportional to the lepton masses. The model, previously proposed to solve both muon and electron g – 2 anomalies simultaneously, is also capable to accommodate the ATLAS excess in pp -> S -> tau(+)tau(-) with gluon-gluon fusion production in the invariant mass range [0.2; 0.6] TeV, including all relevant low and high energy constraints. The excess is reproduced taking into account the new contributions from the scalar H, the pseudoscalar A, or both. In particular, detailed numerical analyses favoured the solution with a significant hierarchy among the vevs of the two Higgs doublets, t(beta)similar to 10, and light neutral scalars satisfying m(A) > m(H) with sizable couplings to tau leptons. In this region of the parameter space, the muon g – 2 anomaly receives one and two-loop (Barr Zee) contributions of similar size, while the electron anomaly is explained at two loops. An analogous ATLAS excess in b-associated production and the CMS excess in ditop production are also studied. Further New Physics prospects concerning the anomalous magnetic moment of the tau lepton and the implications of the CDF M-W measurement on the final results are discussed.
Address [Botella, Francisco J.; Miro, Carlos; Nebot, Miguel] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Francisco.J.Botella@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:001132956900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5877
Permanent link to this record
 

 
Author XENON100 Collaboration (Aprile, E. et al); Orrigo, S.E.A.
Title Observation and applications of single-electron charge signals in the XENON100 experiment Type Journal Article
Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 41 Issue (up) 3 Pages 035201 - 13pp
Keywords xenon; single electron; photoionization; double phase TPC
Abstract The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experiment: the secondary-scintillation gain, the extraction yield from the liquid to the gas phase and the electron drift velocity.
Address [Aprile, E.; Budnik, R.; Choi, B.; Contreras, H.; Giboni, K-L; Goetzke, L. W.; Lim, K. E.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: jacob.lamblin@lpsc.in2p3.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000331865800012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1959
Permanent link to this record
 

 
Author Becker, P.; Davesne, D.; Meyer, J.; Pastore, A.; Navarro, J.
Title Tools for incorporating a D-wave contribution in Skyrme energy density functionals Type Journal Article
Year 2015 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 42 Issue (up) 3 Pages 034001 - 19pp
Keywords energy density functional; D-wave; Skyrme pseudo-potential; linear response theory
Abstract The possibility of adding a D-wave term to the standard Skyrme effective interaction has been widely considered in the past. Such a term has been shown to appear in the next-to-next-to-leading order of the Skyrme pseudo-potential. The aim of the present article is to provide the necessary tools to incorporate this term in a fitting procedure: first, a mean-field equation written in spherical symmetry in order to describe spherical nuclei and second, the response function to detect unphysical instabilities. With these tools it will be possible to build a new fitting procedure to determine the coupling constants of the new functional.
Address [Becker, P.; Davesne, D.; Meyer, J.] Univ Lyon, F-69622 Lyon, France, Email: apastore@ulb.ac.be
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000353300200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2202
Permanent link to this record
 

 
Author AGATA Collaboration (Lalovic, N. et al); Gadea, A.; Domingo-Pardo, C.
Title Study of isomeric states in Pb-198, Pb-200, Pb-202, Pb-206 and Hg-206 populated in fragmentation reactions Type Journal Article
Year 2018 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 45 Issue (up) 3 Pages 035105 - 27pp
Keywords gamma-ray spectroscopy; relativistic projectile fragmentation; direct reactions; isomeric decays; electromagnetic transitions; nuclear shell model
Abstract Isomeric states in isotopes in the vicinity of doubly-magic Pb-208 were populated following reactions of a relativistic Pb-208 primary beam impinging on a Be-9 fragmentation target. Secondary beams of Pb-198,Pb-200,Pb-202,Pb-206 and Hg-206 were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed gamma rays were detected with the Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei Pb-206/Hg-206 was found to differ from the population of multi neutron-hole isomeric states in Pb-198,Pb-200,Pb-202.
Address [Lalovic, N.; Rudolph, D.; Sarmiento, L. G.; Golubev, P.; Fahlander, C.; Gellanki, J.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden, Email: Natasa.Lalovic@nuclear.lu.se
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000424906600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3488
Permanent link to this record
 

 
Author Feng, J.L. et al; Garcia Soto, A.; Hirsch, M.
Title The Forward Physics Facility at the High-Luminosity LHC Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue (up) 3 Pages 030501 - 410pp
Keywords Forward Physics Facility; Large Hadron Collider; new particle searches; neutrinos; QCD; astroparticle physics; dark matter
Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.
Address [Feng, Jonathan L.; Tsai, Yu-Dai; Bian, Jianming; Casper, David W.; Fieg, Max; Huang, Fei; Kuo, Jui-Lin; Wu, Wenjie] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA, Email: jlf@uci.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000934195400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5491
Permanent link to this record
 

 
Author Andringa, S. et al; Capozzi, F.; Sorel, M.
Title Low-energy physics in neutrino LArTPCs Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue (up) 3 Pages 033001 - 60pp
Keywords physics; neutrino; LArTPC
Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.
Address [Andringa, S.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal, Email: blittlej@iit.edu;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000931327500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5502
Permanent link to this record
 

 
Author Correia, F.C.
Title Fundamentals of the 3-3-1 model with heavy leptons Type Journal Article
Year 2018 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 45 Issue (up) 4 Pages 043001 - 31pp
Keywords 3-3-1 models; heavy leptons; heavy quarks
Abstract This work is a brief presentation of the theory based on the SU(3)(c) circle times SU(3)(L) circle times U(1)(X) gauge group in the presence of heavy leptons. Recent studies [1] have considered a set of four possible variants for the 3-3-1HL, whose content arises according to the so-denoted variable beta. Since it has been argued about the presence of stable charged particles in this sort of model, we divide the different sectors of the Lagrangian between universal and specific vertices, and conclude that the omission of beta-dependent terms in the potential may induce discrete symmetry for the versions defined by vertical bar beta vertical bar = root 3 . In the context of vertical bar beta vertical bar = 1/root 3, where the new degrees of freedom have the same standard electric charges, additional Yukawa interactions may create decay channels into the SM sector. Furthermore, motivated by a general consequence of the Goldstone theorem, a method of diagonalization by parts is introduced in the Scalar sector and provides a clarification on the definition of mass eigenstates. In summary, we develop the most complete set of terms allowed by the symmetry group and resolve their definitive pieces in order to justify the model description present in the literature.
Address [Correia, F. C.] Sao Paulo State Univ, UNESP, Inst Theoret Phys, BR-01140070 Sao Paulo, SP, Brazil, Email: ccorreia@ift.unesp.br
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000425634400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3504
Permanent link to this record