toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Perez, A. url  doi
openurl 
  Title Asymptotic properties of the Dirac quantum cellular automaton Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 93 Issue (up) 1 Pages 012328 - 10pp  
  Keywords  
  Abstract We show that the Dirac quantum cellular automaton [A. Bisio, G. M. D'Ariano, and A. Tosini, Ann. Phys. (N. Y.) 354, 244 (2015)] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at regular time steps on a one-dimensional lattice, in the spirit of general quantum cellular automata. In this way, it becomes an alternative to the quantum walk, with a dispersion relation that can be controlled by a parameter that plays a similar role to the coin angle in the quantum walk. The Dirac Hamiltonian is recovered under a suitable limit. We provide two independent analytical approximations to the long-term probability distribution. It is shown that, starting from localized conditions, the asymptotic value of the entropy of entanglement between internal and motional degrees of freedom overcomes the known limit that is approached by the quantum walk for the same initial conditions and is similar to the ones achieved by highly localized states of the Dirac equation.  
  Address [Perez, A.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368291600005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2520  
Permanent link to this record
 

 
Author Gomis, P.; Perez, A. url  doi
openurl 
  Title Decoherence effects in the Stern-Gerlach experiment using matrix Wigner functions Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue (up) 1 Pages 012103 - 11pp  
  Keywords  
  Abstract We analyze the Stern-Gerlach experiment in phase space with the help of the matrix Wigner function, which includes the spin degree of freedom. Such analysis allows for an intuitive visualization of the quantum dynamics of the device. We include the interaction with the environment, as described by the Caldeira-Leggett model. The diagonal terms of the matrix provide us with information about the two components of the state that arise from interaction with the magnetic field gradient. In particular, from the marginals of these components, we obtain an analytical formula for the position and momentum probability distributions in the presence of decoherence that shows a diffusive behavior for large values of the decoherence parameter. These features limit the dynamics of the present model. We also observe the decay of the nondiagonal terms with time and use this fact to quantify the amount of decoherence from the norm of those terms in phase space. From here, we can define a decoherence time scale, which differs from previous results that make use of the same model. We analyze a typical experiment and show that, for that setup, the decoherence time is much smaller than the characteristic time scale for the separation of the two beams, implying that they can be described as an incoherent mixture of atoms traveling in the up and down directions with opposite values of the spin projection. Therefore, entanglement is quickly destroyed in the setup we analyzed.  
  Address [Gomis, P.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: Pablo.Gomis@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000378909000003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2739  
Permanent link to this record
 

 
Author Arnault, P.; Di Molfetta, G.; Brachet, M.; Debbasch, F. url  doi
openurl 
  Title Quantum walks and non-Abelian discrete gauge theory Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue (up) 1 Pages 012335 - 6pp  
  Keywords  
  Abstract A family of discrete-time quantum walks (DTQWs) on the line with an exact discrete U(N) gauge invariance is introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of a Dirac fermion coupled to usual U(N) gauge fields in two-dimensional spacetime. A discrete generalization of the usual U(N) curvature is also constructed. An alternate interpretation of these results in terms of superimposed U(1) Maxwell fields and SU(N) gauge fields is discussed in the Appendix. Numerical simulations are also presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare the DTQWs with classical (i.e., nonquantum) motions in classical SU(2) fields. The results presented in this paper constitute a first step towards quantum simulations of generic Yang-Mills gauge theories through DTQWs.  
  Address [Arnault, Pablo; Debbasch, Fabrice] Univ Paris 06, Univ Paris 04, PSL Res Univ, LERMA,Observ Paris,CNRS,UMR 8112, F-75014 Paris, France, Email: pablo.arnault@upmc.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000380095000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2761  
Permanent link to this record
 

 
Author Wuensch, W.; Degiovanni, A.; Calatroni, S.; Korsback, A.; Djurabekova, F.; Rajamaki, R.; Giner-Navarro, J. doi  openurl
  Title Statistics of vacuum breakdown in the high-gradient and low-rate regime Type Journal Article
  Year 2017 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 20 Issue (up) 1 Pages 011007 - 11pp  
  Keywords  
  Abstract In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DCto 12GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.  
  Address [Wuensch, Walter; Degiovanni, Alberto; Calatroni, Sergio] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: anders.korsback@helsinki.fi  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400781300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3125  
Permanent link to this record
 

 
Author Guo, J.J.; Sun, F.X.; Zhu, D.Q.; Gessner, M.; He, Q.Y.; Fadel, M. url  doi
openurl 
  Title Detecting Einstein-Podolsky-Rosen steering in non-Gaussian spin states from conditional spin-squeezing parameters Type Journal Article
  Year 2023 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 108 Issue (up) 1 Pages 012435 - 7pp  
  Keywords  
  Abstract We present an experimentally practical method to reveal Einstein-Podolsky-Rosen (EPR) steering in non-Gaussian spin states by exploiting a connection to quantum metrology. Our criterion is based on the quantum Fisher information, and uses bounds derived from generalized spin-squeezing parameters that involve measurements of higher-order moments. This leads us to introduce the concept of conditional spin-squeezing parameters, which quantify the metrological advantage provided by conditional states, as well as detect the presence of an EPR paradox.  
  Address [Guo, Jiajie; Sun, Feng-Xiao; Zhu, Daoquan; He, Qiongyi] Peking Univ, State Key Lab Mesoscop Phys, Sch Phys, Frontiers Sci Ctr Nanooptoelect, Beijing 100871, Peoples R China, Email: manuel.gessner@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001130449100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5905  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva