toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Study of the production of A(b)(0) and (B)over-bar(0) hadrons in pp collisions and first measurement of the A(b)(0)-> J/psi pK(-) branching fraction Type Journal Article
  Year 2016 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 40 Issue (up) 1 Pages 011001 - 16pp  
  Keywords production cross-section; branching fraction; b hadrons; proton-proton collisions  
  Abstract The product of the A(b)(0) ((B) over bar (0)) differential production cross-section and the branching fraction of the decay A(b)(0)-> J/psi pK(-) ((B) over bar (0)-> J/psi p (K) over bar*(892)(0)) is measured as a function of the beauty hadron transverse momentum, p(T), and rapidity, y. The kinematic region of the measurements is p(T) <20 GeV/c and 2.0 < y < 4.5. The measurements use a data sample corresponding to an integrated luminosity of 3fb(-1) collected by the LHCb detector in pp collisions at centre-of-mass energies root s=7 TeV in 2011 and root s=8 TeV in 2012. Based on previous LHCb results of the fragmentation fraction ratio, f(Ab0)/f(d), the branching fraction of the decay A(b)(0)-> J/psi pK(-) is measured to be B(A(b)(0)-> J/psi pK(-))=(3.17 +/- 0.04 +/- 0.07 +/- 0.34(-0.28)(+0.45))x10(-4) where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay (B) over bar (0)-> J/psi p (K) over bar*(892)(0), and the fourth is due to the knowledge of f(Ab0)/f(d). The sum of the asymmetries in the production and decay between A(b)(0) and (A) over bar (0)(b) is also measured as a function of p(T) and y. The previously published branching fraction of A(b)(0)-> J/psi p pi(-), relative to that of A(b)(0)-> J/psi pK(-), is updated. The branching fractions of A(b)(0)-> P-c(+)(-> J/psi p)K- are determined.  
  Address [Bediagal, I.; De Miranda, J. M.; Rodrigues, F. Ferreira; Gomes, A.; Massafferri, A.; Rodrigues, B. Osorio; Dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Chinese Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368221600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2526  
Permanent link to this record
 

 
Author Debastiani, V.R.; Navarra, F.S. url  doi
openurl 
  Title A non-relativistic model for the [cc][(c)over-bar(c)over-bar] tetraquark Type Journal Article
  Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 43 Issue (up) 1 Pages 013105 - 20pp  
  Keywords tetraquark; charmonium; diquark-antidiquark; nonrelativistic; spin  
  Abstract We use a non-relativistic model to study the spectroscopy of a tetraquark composed of [cc][(c) over bar(c) over bar] in a diquark-antidiquark configuration. By numerically solving the Schrodinger equation with a Cornell-inspired potential, we separate the four-body problem into three two-body problems. Spin-dependent terms (spin-spin, spin-orbit and tensor) are used to describe the splitting structure of the c (c) over bar spectrum and are also extended to the interaction between diquarks. Recent experimental data on charmonium states are used to fix the parameters of the model and a satisfactory description of the spectrum is obtained. We find that the spin-dependent interaction is sizable in the diquark-antidiquark system, despite the heavy diquark mass, and also that the diquark has a finite size if treated in the same way as the c (c) over bar systems. We find that the lowest S-wave T-4c tetraquarks might be below their thresholds of spontaneous dissociation into low-lying charmonium pairs, while orbital and radial excitations would be mostly above the corresponding charmonium pair thresholds. Finally, we repeat the calculations without the confining part of the potential and obtain bound diquarks and bound tetraquarks. This might be relevant to the study of exotic charmonium in the quark-gluon plasma. The T4c states could be investigated in the forthcoming experiments at the LHC and Belle II.  
  Address [Debastiani, V. R.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain, Email: vinicius.rodrigues@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454936600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3865  
Permanent link to this record
 

 
Author Arrechea, J.; Delhom, A.; Jimenez-Cano, A. url  doi
openurl 
  Title Inconsistencies in four-dimensional Einstein-Gauss-Bonnet gravity Type Journal Article
  Year 2021 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 45 Issue (up) 1 Pages 013107 - 8pp  
  Keywords alternative theories of gravity; singularities; Einstein-Gauss-Bonnet  
  Abstract We attempt to clarify several aspects concerning the recently presented four-dimensional Einstein-Gauss-Bonnet gravity. We argue that the limiting procedure outlined in [Phys. Rev. Lett. 124, 081301 (2020)] generally involves ill-defined terms in the four dimensional field equations. Potential ways to circumvent this issue are discussed, alongside remarks regarding specific solutions of the theory. We prove that, although linear perturbations are well behaved around maximally symmetric backgrounds, the equations for second-order perturbations are ill-defined even around a Minkowskian background. Additionally, we perform a detailed analysis of the spherically symmetric solutions and find that the central curvature singularity can be reached within a finite proper time.  
  Address [Arrechea, Julio] CSIC, Inst Astrofis Andalucia, Granada, Spain, Email: arrechea@iaa.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000606026400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4676  
Permanent link to this record
 

 
Author Particle Data Group (Patrignani, C. et al); Hernandez-Rey, J.J. url  doi
openurl 
  Title Review of Particle Physics Type Journal Article
  Year 2016 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 40 Issue (up) 10 Pages 100001 - 1790pp  
  Keywords  
  Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new or heavily revised, including new reviews on Pentaquarks and Inflation. The complete Review is published online in a journal and on the website of the Particle Data Group (http://pdg.lbl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions of some of the review articles is also available.  
  Address [Patrignani, C.] Univ Bologna, I-47921 Rimini, Italy  
  Corporate Author Thesis  
  Publisher Chinese Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387226400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2898  
Permanent link to this record
 

 
Author Wang, E.; Xie, J.J.; Geng, L.S.; Oset, E. url  doi
openurl 
  Title The X(4140) and X(4160) resonances in the e(+)e(-) -> gamma J/psi phi reaction Type Journal Article
  Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 43 Issue (up) 11 Pages 113101 - 10pp  
  Keywords X(4140); J/psi phi scattering; heavy flavor hadrons; X(4160)  
  Abstract We investigate the J/psi phi invariant mass distribution in the e(+)e(-) -> gamma J/psi phi reaction at a center-of-mass energy of root s = 4.6 GeV measured by the BESIII collaboration, which concluded that no significant signals were observed for e(+)e(-) -> gamma J/psi phi because of the low statistics. We show, however, that the J/psi phi invariant mass distribution is compatible with the existence of the X(4140) state, appearing as a peak, and a strong cusp structure at the D-s*(D) over bar (s)* threshold, resulting from the molecular nature of the X(4160) state, which provides a substantial contribution to the reaction. This is consistent with our previous analysis of the B+ -> J psi phi K+ decay measured by the LHCb collaboration. We strongly suggest further measurements of this process with more statistics to clarify the nature of the X(4140) and X(4160) resonances.  
  Address [Wang, En; Xie, Ju-Jun; Geng, Li-Sheng] Zhengzhou Univ, Sch Phys, Zhengzhou 450001, Henan, Peoples R China, Email: lisheng.geng@buaa.edu.cn  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000493109100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4187  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva