toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bernardoni, F.; Blossier, B.; Bulava, J.; Della Morte, M.; Fritzsch, P.; Garron, N.; Gerardin, A.; Heitger, J.; von Hippel, G.; Simma, H.; Sommer, R. url  doi
openurl 
  Title The b-quark mass from non-perturbative N-f=2 Heavy Quark Effective Theory at O(1/m(h)) Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 730 Issue (up) Pages 171-177  
  Keywords Lattice QCD; Heavy Quark Effective Theory; b-quark mass  
  Abstract We report our final estimate of the b-quark mass from N-f = 2 lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at O(1/m(h)). Treating systematic and statistical errors in a conservative manner, we obtain (m) over bar ((MS) over bar)(b) (2 GeV) = 4.88(15) GeV after an extrapolation to the physical point.  
  Address [Bernardoni, Fabio; Simma, Hubert; Sommer, Rainer] DESY, NIC, D-15738 Zeuthen, Germany  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000333506400031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1742  
Permanent link to this record
 

 
Author Bernardoni, F.; Blossier, B.; Bulava, J.; Della Morte, M.; Fritzsch, P.; Garron, N.; Gerardin, A.; Heitger, J.; von Hippel, G.; Simma, H.; Sommer, R. url  doi
openurl 
  Title Decay constants of B-mesons from non-perturbative HQET with two light dynamical quarks Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 735 Issue (up) Pages 349-356  
  Keywords Lattice QCD; Heavy Quark Effective Theory; Bottom quarks; Meson decay  
  Abstract We present a computation of B-meson decay constants from lattice QCD simulations within the framework of Heavy Quark Effective Theory for the b-quark. The next-to-leading order corrections in the HQET expansion are included non-perturbatively. Based on N-f = 2 gauge field ensembles, covering three lattice spacings a approximate to (0.08-0.05) fm and pion masses down to 190 MeV, a variational method for extracting hadronic matrix elements is used to keep systematic errors under control. In addition we perform a careful autocorrelation analysis in the extrapolation to the continuum and to the physical pion mass limits. Our final results read f(B) = 186(13) MeV, f(Bs) = 224(14) MeV and f(Bs)/f(B) = 1.203(65). A comparison with other results in the literature does not reveal a dependence on the number of dynamical quarks, and effects from truncating HQET appear to be negligible.  
  Address [Bernardoni, Fabio; Simma, Hubert; Sommer, Rainer] NIC DESY, D-15738 Zeuthen, Germany  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340048900061 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1881  
Permanent link to this record
 

 
Author Ayala, C.; Cvetic, G. url  doi
openurl 
  Title anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models Type Journal Article
  Year 2016 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 199 Issue (up) Pages 114-117  
  Keywords Analytic (holomorphic) QCD coupling; Fractional Analytic Perturbation Theory; Two-delta analytic QCD model; Massive Perturbation Theory; Perturbative QCD; Renormalization group evolution  
  Abstract We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings A(v)(Q(2)) for complex or real squared momenta Q(2). These couplings are holomorphic analogs of the powers a(Q(2))(v) of the underlying perturbative QCD (pQCD) coupling a(Q(2)) equivalent to alpha(s)(Q(2))/pi, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 delta anQCD), and Massive Perturbation Theory (MPT). The index v can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetic, 2015), but are now written in Fortran. Program summary Program title: AanQCDext Catalogue identifier: AEYKv10 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEYICv1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12105 No. of bytes in distributed program, including test data, etc.: 98822 Distribution format: tar.gz Programming language: Fortran. Computer: Any work-station or PC where Fortran 95/200312008 (gfortran) is running. Operating system: Operating system Linux (Ubuntu and Scientific Linux), Windows (in all cases using gfortran). Classification: 11.1, 11.5. Nature of problem: Calculation of values of the running analytic couplings A(v)(Q(2); N-f) for general complex squared momenta Q(2) equivalent to -q(2), in three analytic QCD models, where A(v)(Q(2); N-f) is the analytic (holomorphic) analog of the power (alpha(s)(Q(2); N-f)/pi)(v). Here, A(v)(Q(2); N-f) is a holomorphic function in the Q(2) complex plane, with the exception of the negative semiaxis (-infinity, -M-thr(2)], reflecting the analyticity properties of the spacelike renormalization invariant quantities D(Q(2)) in QCD. In contrast, the perturbative QCD power (alpha(s)(Q(2); N-f)/pi)(v) has singularities even outside the negative semiaxis (Landau ghosts). The three considered models are: Analytic Perturbation theory (APT); Two-delta analytic QCD (2 delta anQCD); Massive Perturbation Theory (MPT). We refer to Ref. [1] for more details and literature. Solution method: The Fortran programs for FAPT and 2 delta anQCD models contain routines and functions needed to perform two-dimensional numerical integrations involving the spectral function, in order to evaluate A(v)(Q(2)) couplings. In MPT model, one-dimensional numerical integration involving A(1)(Q(2)) is sufficient to evaluate any A(v)(Q(2)) coupling. Restrictions: For unphysical choices of the input parameters the results are meaningless. When Q(2) is close to the cut region of the couplings (Q(2) real negative), the calculations can take more time and can have less precision. Running time: For evaluation of a set of about 10 related couplings, the times vary in the range t similar to 10(1)-10(2) s. MPT requires less time, t similar to 1-10(1) s. References: [1] C. Ayala and G. Cvetic, anQCD: a Mathematica package for calculations in general analytic QCD models, Comput. Phys. Commun. 190 (2015) 182.  
  Address [Ayala, Cesar] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: c.ayala86@gmail.com;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367113200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2501  
Permanent link to this record
 

 
Author Lutz, M.F.M. et al; Nieves, J. url  doi
openurl 
  Title Resonances in QCD Type Journal Article
  Year 2016 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 948 Issue (up) Pages 93-105  
  Keywords Mini review; Resonances; Hadrons; QCD  
  Abstract We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14,2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.  
  Address [Lutz, Matthias F. M.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany, Email: m.lutz@gsi.de;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372943100007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2599  
Permanent link to this record
 

 
Author Ren, X.L.; Alvarez-Ruso, L.; Geng, L.S.; Ledwig, T.; Meng, J.; Vicente Vacas, M.J. url  doi
openurl 
  Title Consistency between SU(3) and SU(2) covariant baryon chiral perturbation theory for the nucleon mass Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 766 Issue (up) Pages 325-333  
  Keywords Baryon chiral perturbation theory; Lattice QCD; Nucleon mass and sigma term  
  Abstract Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the 19low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order[1] is supported by comparing the effective parameters (the combinations of the 19couplings) with the corresponding low-energy constants in the SU(2) sector[2]. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.[2] that the SU(2) baryon chiral perturbation theory can be applied to study n(f) = 2 + 1lattice QCD simulations as long as the strange quark mass is close to its physical value.  
  Address [Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China, Email: lisheng.geng@buaa.edu.cn  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000396438300043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3003  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva