toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bejarano, C.; Delhom, A.; Jimenez-Cano, A.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Geometric inequivalence of metric and Palatini formulations of General Relativity Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 802 Issue (up) Pages 135275 - 4pp  
  Keywords  
  Abstract Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K (R beta μnu R alpha beta μnu)-R-alpha, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.  
  Address [Bejarano, Cecilia] UBA, CONICET, IAFE, Casilla Correo 67,Sucursal 28, RA-1428 Buenos Aires, DF, Argentina, Email: cbejarano@iafe.uba.ar;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000515091400031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4348  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Delhom, A.; Olmo, G.J.; Orazi, E. url  doi
openurl 
  Title Born-Infeld gravity: Constraints from light-by-light scattering and an effective field theory perspective Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 820 Issue (up) Pages 136479 - 6pp  
  Keywords  
  Abstract By using a novel technique that establishes a correspondence between general relativity and metric-affine theories based on the Ricci tensor, we are able to set stringent constraints on the free parameter of Born-Infeld gravity from the ones recently obtained for Born-Infeld electrodynamics by using light-by light scattering data from ATLAS. We also discuss how these gravity theories plus matter fit within an effective field theory framework.  
  Address [Beltran Jimenez, Jose] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000701707400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4978  
Permanent link to this record
 

 
Author Delhom, A.; Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J. url  doi
openurl 
  Title Radiative corrections in metric-affine bumblebee model Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 826 Issue (up) Pages 136932 - 9pp  
  Keywords  
  Abstract We consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric which, besides the zeroth-order Minkowskian contribution, also has the vector field contributions of the bumblebee, and show that it is renormalizable at one-loop level. From our analysis it also follows that the non-metricity of this theory is determined by the gradient of the bumblebee field, and that it can acquire a vacuum expectation value due to the contribution of the bumblebee field.  
  Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: adria.delhom@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000792884500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5229  
Permanent link to this record
 

 
Author Arrechea, J.; Delhom, A.; Jimenez-Cano, A. url  doi
openurl 
  Title Inconsistencies in four-dimensional Einstein-Gauss-Bonnet gravity Type Journal Article
  Year 2021 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 45 Issue (up) 1 Pages 013107 - 8pp  
  Keywords alternative theories of gravity; singularities; Einstein-Gauss-Bonnet  
  Abstract We attempt to clarify several aspects concerning the recently presented four-dimensional Einstein-Gauss-Bonnet gravity. We argue that the limiting procedure outlined in [Phys. Rev. Lett. 124, 081301 (2020)] generally involves ill-defined terms in the four dimensional field equations. Potential ways to circumvent this issue are discussed, alongside remarks regarding specific solutions of the theory. We prove that, although linear perturbations are well behaved around maximally symmetric backgrounds, the equations for second-order perturbations are ill-defined even around a Minkowskian background. Additionally, we perform a detailed analysis of the spherically symmetric solutions and find that the central curvature singularity can be reached within a finite proper time.  
  Address [Arrechea, Julio] CSIC, Inst Astrofis Andalucia, Granada, Spain, Email: arrechea@iaa.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000606026400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4676  
Permanent link to this record
 

 
Author Delhom, A.; Lobo, I.P.; Olmo, G.J.; Romero, C. url  doi
openurl 
  Title A generalized Weyl structure with arbitrary non-metricity Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue (up) 10 Pages 878 - 9pp  
  Keywords  
  Abstract A Weyl structure is usually defined by an equivalence class of pairs (g, omega) related by Weyl transformations, which preserve the relation del g = omega circle times g, where g and omega denote the metric tensor and a 1-form field. An equivalent way of defining such a structure is as an equivalence class of conformally related metrics with a unique affine connection Gamma((omega)), which is invariant under Weyl transformations. In a standard Weyl structure, this unique connection is assumed to be torsion-free and have vectorial non-metricity. This second view allows us to present two different generalizations of standard Weyl structures. The first one relies on conformal symmetry while allowing for a general non-metricity tensor, and the other comes from extending the symmetry to arbitrary (disformal) transformations of the metric.  
  Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: adria.delhom@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000491497000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4185  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva