|   | 
Details
   web
Records
Author Forero, D.V.; Morisi, S.; Tortola, M.; Valle, J.W.F.
Title Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue (down) 9 Pages 142 - 18pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract Within low-scale seesaw mechanisms, such as the inverse and linear seesaw, one expects (i) potentially large lepton flavor violation (LFV) and (ii) sizeable non-standard neutrino interactions (NSI). We consider the interplay between the magnitude of non-unitarity effects in the lepton mixing matrix, and the constraints that follow from LFV searches in the laboratory. We find that NSI parameters can be sizeable, up to percent level in some cases, while LFV rates, such as that for μ-> e gamma, lie within current limits, including the recent one set by the MEG collaboration. As a result the upcoming long baseline neutrino experiments offer a window of opportunity for complementary LFV and weak universality tests.
Address [Forero, DV; Morisi, S; Tortola, M; Valle, JWF] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp,Edificio Inst Paterna, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000296086700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 817
Permanent link to this record
 

 
Author Fonseca, R.M.; Grimus, W.
Title Classification of lepton mixing matrices from finite residual symmetries Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue (down) 9 Pages 033 - 54pp
Keywords Global Symmetries; Beyond Standard Model; Neutrino Physics
Abstract Assuming that neutrinos are Majorana particles, we perform a complete classification of all possible mixing matrices which are fully determined by residual symmetries in the charged-lepton and neutrino mass matrices. The classification is based on the assumption that the residual symmetries originate from a finite flavour symmetry group. The mathematical tools which allow us to accomplish this classification are theorems on sums of roots of unity. We find 17 sporadic cases plus one infinite series of mixing matrices associated with three-flavour mixing, all of which have already been discussed in the literature. Only the infinite series contains mixing matrices which are compatible with the data at the 3 sigma level.
Address [Fonseca, Renato M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000347898400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2084
Permanent link to this record
 

 
Author De Romeri, V.; Fernandez-Martinez, E.; Sorel, M.
Title Neutrino oscillations at DUNE with improved energy reconstruction Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue (down) 9 Pages 030 - 25pp
Keywords CP violation; Neutrino Physics
Abstract We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy resolution compared to what is customarily assumed are plausible. This improved energy resolution can increase the sensitivity to leptonic CP violation in two ways. On the one hand, the CP-violating term in the oscillation probability has a characteristic energy dependence that can be better reproduced. On the other hand, the second oscillation maximum, especially sensitive to delta(CP), is better reconstructed. These effects lead to a significant improvement in the fraction of values of delta(CP) for which a 5 sigma discovery of leptonic CP-violation would be possible. The precision of the delta(CP) measurement could also be greatly enhanced, with a reduction of the maximum uncertainties from 26 degrees to 18 degrees for a 300 MW.kt.yr exposure. We therefore believe that this potential gain in physics reach merits further investigations of the detector performance achievable in DUNE.
Address [De Romeri, Valentina; Fernandez-Martinez, Enrique] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: valentina.deromeri@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000382887300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2807
Permanent link to this record
 

 
Author Bjorkeroth, F.; de Medeiros Varzielas, I.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.
Title Leptogenesis in Delta(27) with a universal texture zero Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue (down) 9 Pages 050 - 24pp
Keywords Beyond Standard Model; GUT; Neutrino Physics
Abstract We investigate the possibility of viable leptogenesis in an appealing Delta(27) model with a universal texture zero in the (1,1) entry. The model accommodates the mass spectrum, mixing and CP phases for both quarks and leptons and allows for grand unification. Flavoured Boltzmann equations for the lepton asymmetries are solved numerically, taking into account both N-1 and N-2 right-handed neutrino decays. The N-1-dominated scenario is successful and the most natural option for the model, with M-1 is an element of [10(9), 10(12)] GeV, and M-1/M-2 is an element of [0.002, 0.1], which constrains the parameter space of the underlying model and yields lower bounds on the respective Yukawa couplings. Viable leptogenesis is also possible in the N-2-dominated scenario, with the asymmetry in the electron flavour protected from N-1 washout by the texture zero. However, this occurs in a region of parameter space which has a stronger mass hierarchy M-1/M-2< 0.002, and M-2 relatively close to M-3, which is not a natural expectation of the Delta(27) model.
Address [Bjorkeroth, Fredrik] INFN, Lab Nazl Frascati, CP 13, I-100044 Frascati, Italy, Email: fredrik.bjorkeroth@lnf.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000485053000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4139
Permanent link to this record
 

 
Author Sierra, D.A.; De Romeri, V.; Rojas, N.
Title CP violating effects in coherent elastic neutrino-nucleus scattering processes Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue (down) 9 Pages 069 - 22pp
Keywords Beyond Standard Model; CP violation; Neutrino Physics
Abstract The presence of new neutrino-quark interactions can enhance, deplete or distort the coherent elastic neutrino-nucleus scattering (CEvNS) event rate. The new interactions may involve CP violating phases that can potentially affect these features. Assuming light vector mediators, we study the effects of CP violation on the CEvNS process in the COHERENT sodium-iodine, liquid argon and germanium detectors. We identify a region in parameter space for which the event rate always involves a dip and another one for which this is never the case. We show that the presence of a dip in the event rate spectrum can be used to constraint CP violating effects, in such a way that the larger the detector volume the tighter the constraints. Furthermore, it allows the reconstruction of the effective coupling responsible for the signal with an uncertainty determined by recoil energy resolution. In the region where no dip is present, we find that CP violating parameters can mimic the Standard Model CEvNS prediction or spectra induced by real parameters. We point out that the interpretation of CEvNS data in terms of a light vector mediator should take into account possible CP violating effects. Finally, we stress that our results are qualitatively applicable for CEvNS induced by solar or reactor neutrinos. Thus, the CP violating effects discussed here and their consequences should be taken into account as well in the analysis of data from multi-ton dark matter detectors or experiments such as CONUS, nu-cleus or CONNIE.
Address [Aristizabal Sierra, D.; Rojas, N.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000490854300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4179
Permanent link to this record