|   | 
Details
   web
Records
Author Clemente, G.; Crippa, A.; Jansen, K.; Ramirez-Uribe, S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Vale Silva, L.
Title Variational quantum eigensolver for causal loop Feynman diagrams and directed acyclic graphs Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue (down) 9 Pages 096035 - 19pp
Keywords
Abstract We present a variational quantum eigensolver (VQE) algorithm for the efficient bootstrapping of the causal representation of multiloop Feynman diagrams in the loop-tree duality or, equivalently, the selection of acyclic configurations in directed graphs. A loop Hamiltonian based on the adjacency matrix describing a multiloop topology, and whose different energy levels correspond to the number of cycles, is minimized by VQE to identify the causal or acyclic configurations. The algorithm has been adapted to select multiple degenerated minima and thus achieves higher detection rates. A performance comparison with a Grover's based algorithm is discussed in detail. The VQE approach requires, in general, fewer qubits and shorter circuits for its implementation, albeit with lesser success rates.
Address [Clemente, Giuseppe; Crippa, Arianna; Jansen, Karl] Deutsch Elektronen Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany, Email: giuseppe.clemente@desy.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001129019300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5891
Permanent link to this record
 

 
Author Sborlini, G.F.R.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Rodrigo, G.
Title Four-dimensional unsubtraction from the loop-tree duality Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue (down) 8 Pages 160 - 42pp
Keywords NLO Computations
Abstract We present a new algorithm to construct a purely four dimensional representation of higher-order perturbative corrections to physical cross-sections at next-to-leading order (NLO). The algorithm is based on the loop-tree duality (LTD), and it is implemented by introducing a suitable mapping between the external and loop momenta of the virtual scattering amplitudes, and the external momenta of the real emission corrections. In this way, the sum over degenerate infrared states is performed at integrand level and the cancellation of infrared divergences occurs locally without introducing subtraction counter-terms to deal with soft and final-state collinear singularities. The dual representation of ultraviolet counter-terms is also discussed in detail, in particular for self-energy contributions. The method is first illustrated with the scalar three-point function, before proceeding with the calculation of the physical cross-section for gamma* -> q (q) over bar (g), and its generalisation to multi-leg processes. The extension to next-to-next-to-leading order (NNLO) is briefly commented.
Address [Sborlini, German F. R.; Driencourt-Mangin, Felix; Hernandez-Pinto, Roger J.; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: gfsborlini@df.uba.ar;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000382685100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2793
Permanent link to this record
 

 
Author Gnendiger, C.; Signer, A.; Stockinger, D.; Broggio, A.; Cherchiglia, A.L.; Driencourt-Mangin, F.; Fazio, A.R.; Hiller, B.; Mastrolia, P.; Peraro, T.; Pittau, R.; Pruna, G.M.; Rodrigo, G.; Sampaio, M.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tramontano, F.; Ulrich, Y.; Visconti, A.
Title To d, or not to d: recent developments and comparisons of regularization schemes Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue (down) 7 Pages 471 - 39pp
Keywords
Abstract We give an introduction to several regularization schemes that deal with ultraviolet and infrared singularities appearing in higher-order computations in quantum field theories. Comparing the computation of simple quantities in the various schemes, we point out similarities and differences between them.
Address [Gnendiger, C.; Signer, A.; Pruna, G. M.; Ulrich, Y.; Visconti, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland, Email: Christoph.Gnendiger@psi.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000405609700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3207
Permanent link to this record
 

 
Author Autieri, A.; Cieri, L.; Ferrera, G.; Sborlini, G.F.R.
Title Combining QED and QCD transverse-momentum resummation for W and Z boson production at hadron colliders Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue (down) 7 Pages 104 - 30pp
Keywords Electroweak Precision Physics; Precision QED; Resummation
Abstract In this article, we consider the transverse momentum (qT) distribution of W and Z bosons produced in hadronic collisions. We combine the qT resummation for QED and QCD radiation including the QED soft emissions from the W boson in the final state. In particular, we perform the resummation of enhanced logarithmic contributions due to soft and collinear emissions at next-to-leading accuracy in QED, leading-order accuracy for mixed QED-QCD and next-to-next-to-leading accuracy in QCD. In the small-qT region we consistently include in our results the next-to-next-to-leading order (i.e. two loops) QCD corrections and the next-to-leading order (i.e. one loop) electroweak corrections. The matching with the fixed-order calculation at large qT has been performed at next-to-leading order in QCD (i.e. at O(alpha(2)(S))) and at leading order in QED. We show numerical results for W and Z production at the Tevatron and the LHC. Finally, we consider the effect of combined QCD and QED resummation for the ratio of W and Z qT distributions, and we study the impact of the QED corrections providing an estimate of the corresponding perturbative uncertainties.
Address [Autieri, Andrea; Cieri, Leandro] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cientif, E-46980 Valencia, Spain, Email: andrea.autieri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001030009700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5596
Permanent link to this record
 

 
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F.
Title FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1 Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue (down) 6 Pages 474 - 161pp
Keywords
Abstract We review the physics opportunities of the Future Circular Collider, covering its e(+)e(-), pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.
Address [Apyan, Arm.] A Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000470335500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4049
Permanent link to this record