|   | 
Details
   web
Records
Author Martin Lozano, V.; Sanda Seoane, R.M.; Zurita, J.
Title Z'-explorer 2.0: Reconnoitering the dark matter landscape Type Journal Article
Year 2023 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 288 Issue (up) Pages 108729 - 14pp
Keywords LHC; New physics; Exclusion limits; Dark matter
Abstract We introduce version 2.0 of Z'-explorer, a software tool that provides a simple, fast, and user-friendly test of models with an extra U (1) gauge boson (Z') against experimental LHC results. The main novelty of the second version is the inclusion of missing energy searches, as the first version only included final states into SM particles. Hence Z'-explorer 2.0 is able to test dark matter models where the Z' acts as an s-channel mediator between the Standard Model and the dark sector, a widespread benchmark employed by the ATLAS and CMS experimental collaborations. To this end, we perform here the first public reinterpretation of the most recent ATLAS mono-jet search with 139 fb-1. In addition, the corresponding searches in the visible final states have also been updated. We illustrate the power of our code by re -obtaining public plots and also showing novel results. In particular, we study the cases where the Z' couples strongly to top quarks (top-philic), where dark matter couples with a mixture of vector and axial-vector couplings, and also perform a scan in the parameter space of a string inspired Stuckelberg model. Z'-explorer 2.0 is publicly available on GitHub. Program summary Program Title: Z'-explorer 2.0 CPC Library link to program files: https://doi .org /10 .17632 /k7tdp8kwgf .2 Developer's repository link: https://github .com /ro -sanda /Z--explorer-2 .0 Licensing provisions: GPLv3 Programming language: C++ and bash Nature of problem: New SM neutral gauge bosons, Z', are ubiquitously present in models of New Physics. In order to confront these models versus a large and ever-growing library of LHC searches, Z'-explorer 1.0 had already included all final states including Standard Model particles. Notably, the previous version of this tool lacked the so-called invisible final states manifested as a momentum imbalance in the transverse plane (“missing energy”). These searches help to probe mediators into a dark sector, where a dark matter candidate resides. Solution method: Z'-explorer encodes the production cross sections for Z' bosons at the LHC as a function of their mass, allowing for a fast evaluation of the exclusion limits. This version of Z'-explorer includes a careful validation of the latest search with one energetic jet (mono-jet) performed by the ATLAS collaboration. Hence one can now test if a given point in parameter space is excluded by both visible and invisible searches. The modular structure of the code has been kept, which allows for potential additions (low-energy constraints, flavor, extrapolation to future colliders).
Address [Lozano, Victor Martin] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: victor.lozano@desy.de;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000969171700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5515
Permanent link to this record
 

 
Author Arganda, E.; Marcano, X.; Martin Lozano, V.; Medina, A.D.; Perez, A.D.; Szewc, M.; Szynkman, A.
Title A method for approximating optimal statistical significances with machine-learned likelihoods Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue (up) 11 Pages 993 - 14pp
Keywords
Abstract Machine-learning techniques have become fundamental in high-energy physics and, for new physics searches, it is crucial to know their performance in terms of experimental sensitivity, understood as the statistical significance of the signal-plus-background hypothesis over the background-only one. We present here a simple method that combines the power of current machine-learning techniques to face high-dimensional data with the likelihood-based inference tests used in traditional analyses, which allows us to estimate the sensitivity for both discovery and exclusion limits through a single parameter of interest, the signal strength. Based on supervised learning techniques, it can perform well also with high-dimensional data, when traditional techniques cannot. We apply the method to a toy model first, so we can explore its potential, and then to a LHC study of new physics particles in dijet final states. Considering as the optimal statistical significance the one we would obtain if the true generative functions were known, we show that our method provides a better approximation than the usual naive counting experimental results.
Address [Arganda, Ernesto; Marcano, Xabier] Inst Fis Teor UAM CSIC, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain, Email: ernesto.arganda@csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000879175000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5404
Permanent link to this record
 

 
Author Bahl, H.; Martin Lozano, V.; Weiglein, G.
Title Simplified models for resonant neutral scalar production with missing transverse energy final states Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue (up) 11 Pages 042 - 37pp
Keywords Multi-Higgs Models; Other Weak Scale BSM Models; Specific BSM Phenomenology
Abstract Additional Higgs bosons appear in many extensions of the Standard Model (SM). While most existing searches for additional Higgs bosons concentrate on final states consisting of SM particles, final states containing beyond the SM (BSM) particles play an important role in many BSM models. In order to facilitate future searches for such final states, we develop a simplified model framework for heavy Higgs boson decays to a massive SM boson as well as one or more invisible particles. Allowing one kind of BSM mediator in each decay chain, we classify the possible decay topologies for each final state, taking into account all different possibilities for the spin of the mediator and the invisible particles. Our comparison of the kinematic distributions for each possible model realization reveals that the distributions corresponding to the different simplified model topologies are only mildly affected by the different spin hypotheses, while there is significant sensitivity for distinguishing between the different decay topologies. As a consequence, we point out that expressing the results of experimental searches in terms of the proposed simplified model topologies will allow one to constrain wide classes of different BSM models. The application of the proposed simplified model framework is explicitly demonstrated for the example of a mono-Higgs search. For each of the simplified models that are proposed in this paper we provide all necessary ingredients for performing Monte-Carlo simulations such that they can readily be applied in experimental analyses.
Address [Bahl, Henning] Univ Chicago, Dept Phys, 5720 South Ellis Ave, Chicago, IL 60637 USA, Email: hbahl@uchicago.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000881997400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5409
Permanent link to this record
 

 
Author Escribano, P.; Martin Lozano, V.; Vicente, A.
Title Scotogenic explanation for the 95 GeV excesses Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue (up) 11 Pages 115001 - 13pp
Keywords
Abstract Several hints of the presence of a new state at about 95 GeV have been observed recently. The CMS and ATLAS Collaborations have reported excesses in the diphoton channel at about this diphoton invariant mass with local statistical significances of 2.9 sigma and 1.7 sigma, respectively. Furthermore, a 2 sigma excess in the bb over bar final state was also observed at LEP, again pointing at a similar mass value. We interpret these intriguing hints of new physics in a variant of the Scotogenic model, an economical scenario that induces Majorana neutrino masses at the loop level and includes a viable dark matter candidate. We show that our model can explain the 95 GeV excesses while respecting the relevant collider, Higgs, and electroweak precision bounds and discuss other phenomenological features of our scenario.
Address [Escribano, Pablo; Lozano, Victor Martin; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Spain, Email: pablo.escribano@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001125382800004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5879
Permanent link to this record
 

 
Author Dreiner, H.K.; Martin Lozano, V.; Nangia, S.; Opferkuch, T.
Title Lepton PDFs and multipurpose single-lepton searches at the LHC Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue (up) 3 Pages 035011 - 12pp
Keywords
Abstract A final state consisting of one charged lepton, at least one jet, and little missing transverse energy can be a very promising signature of new physics at the LHC across a wide range of models. However, it has received only limited attention so far. In this work we discuss the potential sensitivity of this channel to various new physics scenarios. To demonstrate our point, we consider its application to lepton parton distribution functions (PDFs) at the LHC in the context of supersymmetry. These lepton PDFs can lead to resonant squark production (similar to leptoquarks) via lepton number violating couplings present in R-parity violating supersymmetry (RPV-SUSY). Unlike leptoquarks, in RPV-SUSY there are many possible decay modes leading to a wide range of signatures. We propose two generic search regions: (a) a single first or second generation charged lepton, exactly 1 jet and low missing transverse energy, and (b) a single first or second generation charged lepton, at least 3 jets, and low missing transverse energy. We demonstrate that together these cover a large range of RPV-SUSY signatures, and have the potential to perform better than existing low-energy bounds, while being general enough to extend to a wide range of possible models hitherto not explored at the LHC.
Address [Dreiner, Herbi K.; Nangia, Saurabh] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany, Email: dreiner@uni-bonn.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000981753900010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5534
Permanent link to this record