|   | 
Details
   web
Records
Author Guo, J.J.; Sun, F.X.; Zhu, D.Q.; Gessner, M.; He, Q.Y.; Fadel, M.
Title Detecting Einstein-Podolsky-Rosen steering in non-Gaussian spin states from conditional spin-squeezing parameters Type Journal Article
Year 2023 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 108 Issue (up) 1 Pages 012435 - 7pp
Keywords
Abstract We present an experimentally practical method to reveal Einstein-Podolsky-Rosen (EPR) steering in non-Gaussian spin states by exploiting a connection to quantum metrology. Our criterion is based on the quantum Fisher information, and uses bounds derived from generalized spin-squeezing parameters that involve measurements of higher-order moments. This leads us to introduce the concept of conditional spin-squeezing parameters, which quantify the metrological advantage provided by conditional states, as well as detect the presence of an EPR paradox.
Address [Guo, Jiajie; Sun, Feng-Xiao; Zhu, Daoquan; He, Qiongyi] Peking Univ, State Key Lab Mesoscop Phys, Sch Phys, Frontiers Sci Ctr Nanooptoelect, Beijing 100871, Peoples R China, Email: manuel.gessner@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:001130449100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5905
Permanent link to this record
 

 
Author Linowski, T.; Schlichtholz, K.; Sorelli, G.; Gessner, M.; Walschaers, M.; Treps, N.; Rudnicki, L.
Title Application range of crosstalk-affected spatial demultiplexing for resolving separations between unbalanced sources Type Journal Article
Year 2023 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 25 Issue (up) 10 Pages 103050 - 13pp
Keywords super resolution; spatial demultiplexing; crosstalk; unbalanced sources; Fisher information; measurement precision
Abstract Super resolution is one of the key issues at the crossroads of contemporary quantum optics and metrology. Recently, it was shown that for an idealized case of two balanced sources, spatial mode demultiplexing (SPADE) achieves resolution better than direct imaging even in the presence of measurement crosstalk (Gessner et al 2020 Phys. Rev. Lett. 125 100501). In this work, we consider arbitrarily unbalanced sources and provide a systematic analysis of the impact of crosstalk on the resolution obtained from SPADE. As we dissect, in this generalized scenario, SPADE's effectiveness depends non-trivially on the strength of crosstalk, relative brightness and the separation between the sources. In particular, for any source imbalance, SPADE performs worse than ideal direct imaging in the asymptotic limit of vanishing source separations. Nonetheless, for realistic values of crosstalk strength, SPADE is still the superior method for several orders of magnitude of source separations.
Address [Linowski, Tomasz; Schlichtholz, Konrad; Rudnicki, Lukasz] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80308 Gdansk, Poland, Email: t.linowski95@gmail.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:001119385500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5844
Permanent link to this record
 

 
Author Biagi, N.; Francesconi, S.; Gessner, M.; Bellini, M.; Zavatta, A.
Title Remote Phase Sensing by Coherent Single Photon Addition Type Journal Article
Year 2022 Publication Advanced Quantum Technologies Abbreviated Journal Adv. Quantum Technol.
Volume 5 Issue (up) 12 Pages 2200039 - 9pp
Keywords quantum optics; quantum state engineering; remote quantum sensing
Abstract A remote phase sensing scheme is proposed, inspired by the high sensitivity of the entanglement produced by coherent multimode photon addition on the phase set in the remote heralding apparatus. By exploring the case of delocalized photon addition over two modes containing identical coherent states, the optimal observable to perform remote phase estimation from heralded quadrature measurements is derived. The technique is experimentally tested with calibration measurements and then used for estimating a remote phase with a sensitivity that is found to scale with the intensity of the local coherent states, which never interacted with the sample.
Address [Biagi, Nicola; Francesconi, Saverio; Bellini, Marco; Zavatta, Alessandro] Ist Nazl Ott CNR INO, Lgo E Fermi 6, I-50125 Florence, Italy, Email: marco.bellini@ino.cnr.it;
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000865838800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5378
Permanent link to this record
 

 
Author Gessner, M.; Smerzi, A.
Title Hierarchies of Frequentist Bounds for Quantum Metrology: From Cramer-Rao to Barankin Type Journal Article
Year 2023 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 130 Issue (up) 26 Pages 260801 - 6pp
Keywords
Abstract We derive lower bounds on the variance of estimators in quantum metrology by choosing test observables that define constraints on the unbiasedness of the estimator. The quantum bounds are obtained by analytical optimization over all possible quantum measurements and estimators that satisfy the given constraints. We obtain hierarchies of increasingly tight bounds that include the quantum Cramer-Rao bound at the lowest order. In the opposite limit, the quantum Barankin bound is the variance of the locally best unbiased estimator in quantum metrology. Our results reveal generalizations of the quantum Fisher information that are able to avoid regularity conditions and identify threshold behavior in quantum measurements with mixed states, caused by finite data.
Address [Gessner, Manuel] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Carrer Dr Moliner 50, Valencia 46100, Spain, Email: manuel.gessner@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001140164100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5902
Permanent link to this record
 

 
Author Baamara, Y.; Gessner, M.; Sinatra, A.
Title Quantum-enhanced multiparameter estimation and compressed sensing of a field Type Journal Article
Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 14 Issue (up) 3 Pages 050 - 18pp
Keywords
Abstract We show that a significant quantum gain corresponding to squeezed or over-squeezed spin states can be obtained in multiparameter estimation by measuring the Hadamard coefficients of a 1D or 2D signal. The physical platform we consider consists of twolevel atoms in an optical lattice in a squeezed-Mott configuration, or more generally by correlated spins distributed in spatially separated modes. Our protocol requires the possibility to locally flip the spins, but relies on collective measurements. We give examples of applications to scalar or vector field mapping and compressed sensing.
Address [Baamara, Youcef; Sinatra, Alice] Univ PSL, Univ Sorbonne, ENS, Lab Kastler Brossel,CNRS, 24 Rue Lhomond, F-75231 Paris, France, Email: alice.sinatra@lkb.ens.fr
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000974981200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5519
Permanent link to this record