|   | 
Details
   web
Records
Author Rodriguez, D. et al; Algora, A.; Rubio, B.; Tain, J.L.
Title MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR Type Journal Article
Year 2010 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume 183 Issue (up) Pages 1-123
Keywords
Abstract Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10(-9) can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e. g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner. The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with beta-delayed neutron detection) has been achieved with rates of only a few atoms per second. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.
Address [Rodriguez, D.; Lallena, A. M.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain, Email: danielrodriguez@ugr.es
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes ISI:000280061400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 412
Permanent link to this record
 

 
Author AGATA Collaboration (Akkoyun, S. et al); Algora, A.; Barrientos, D.; Domingo-Pardo, C.; Egea, F.J.; Gadea, A.; Huyuk, T.; Kaci, M.; Mendez, V.; Rubio, B.; Salt, J.; Tain, J.L.
Title AGATA-Advanced GAmma Tracking Array Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 668 Issue (up) Pages 26-58
Keywords AGATA; gamma-Ray spectroscopy; gamma-Ray tracking; HPGe detectors; Digital signal processing; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulations
Abstract The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.
Address [Boston, A. J.; Boston, H. C.; Colosimo, S.; Cooper, R. J.; Cresswell, J. R.; Dimmock, M. R.; Filmer, F.; Grint, A. N.; Harkness, L. J.; Judson, D. S.; Mather, A. R.; Moon, S.; Nelson, L.; Nolan, P. J.; Norman, M.; Oxley, D. C.; Rigby, S.; Sampson, J.; Scraggs, D. P.; Seddon, D.; Slee, M.; Stanios, T.; Thornhill, J.; Unsworth, C.; Wells, D.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England, Email: a.j.boston@liverpool.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000300864200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 923
Permanent link to this record
 

 
Author Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Tain, J.L.; Algora, A.; Berthoumieux, E.; Colonna, N.; Domingo-Pardo, C.; Gonzalez-Romero, E.; Heil, M.; Jordan, D.; Kappeler, F.; Lampoudis, C.; Martinez, T.; Massimi, C.; Plag, R.
Title Monte Carlo simulation of the n_TOF Total Absorption Calorimeter Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 671 Issue (up) Pages 108-117
Keywords Monte Carlo simulation; Geant4; Neutron cross-sections; Time-of-flight; Neutron capture
Abstract The n_TOF Total Absorption Calorimeter (TAC) is a 4 pi BaF2 segmented detector used at CERN for measuring neutron capture cross-sections of importance for the design of advanced nuclear reactors. This work presents the simulation code that has been developed in GEANT4 for the accurate determination of the detection efficiency of the TAC for neutron capture events. The code allows to calculate the efficiency of the TAC for every neutron capture state, as a function of energy, crystal multiplicity, and counting rate. The code includes all instrumental effects such as the single crystal detection threshold and energy resolution, finite size of the coincidence time window, and signal pile-up. The results from the simulation have been validated with experimental data for a large set of electromagnetic de-excitation patterns: beta-decay of well known calibration sources, neutron capture reactions in light nuclei with well known level schemes like Ti-nat, reference samples used in (n,gamma) measurements like Au-197 and experimental data from an actinide sample like Pu-240. The systematic uncertainty in the determination of the detection efficiency has been estimated for all the cases. As a representative example, the accuracy reached for the case of Au-197(n,gamma) ranges between 0.5% and 2%, depending on the experimental and analysis conditions. Such a value matches the high accuracy required for the nuclear cross-section data needed in advanced reactor design.
Address [Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Gonzalez-Romero, E.; Martinez, T.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain, Email: carlos.guerrero@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000301474600013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 973
Permanent link to this record
 

 
Author Garcia, A.R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M.C.; Reillo, E.M.; Santos, C.; Tera, F.J.; Villamarin, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.; Pentilla, H.; Rinta-Antila, S.; Gorelov, D.
Title MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue (up) Pages C05012 - 12pp
Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Neutron detectors (cold, thermal, fast neutrons)
Abstract The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.
Address [Garcia, A. R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarin, D.] Ctr Invest Energet MedioAmbientales & Tecnol CIEM, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000305419700013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1084
Permanent link to this record
 

 
Author Kowalska, M.; Naimi, S.; Agramunt, J.; Algora, A.; Beck, D.; Blank, B.; Blaum, K.; Bohm, C.; Borgmann, C.; Breitenfeldt, M.; Fraile, L.M.; George, S.; Herfurth, F.; Herlert, A.; Kreim, S.; Lunney, D.; Minaya-Ramirez, E.; Neidherr, D.; Rosenbusch, M.; Rubio, B.; Schweikhard, L.; Stanja, J.; Zuber, K.
Title Trap-assisted decay spectroscopy with ISOLTRAP Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 689 Issue (up) Pages 102-107
Keywords Penning trap mass spectrometers; Trap-assisted decay spectroscopy; Studies at ISOL-type facilities
Abstract Penning traps are excellent high-precision mass spectrometers for radionuclides. The high-resolving power used for cleaning isobaric and even isomeric contaminants can be exploited to improve decay-spectroscopy studies by delivering purified samples. An apparatus allowing trap-assisted decay spectroscopy has been coupled to the ISOLTRAP mass spectrometer at ISOLDE/CERN. The results from studies with stable and radioactive ions show that the setup can be used to perform decay studies on purified short-lived nuclides and to assist mass measurements.
Address [Kowalska, M.; Herlert, A.] CERN, Dept Phys, CH-1211 Geneva 23, Switzerland, Email: kowalska@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000307797500016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1134
Permanent link to this record
 

 
Author Sahin, E. et al; Gadea, A.; Algora, A.
Title Structure of the N=50 As, Ge, Ga nuclei Type Journal Article
Year 2012 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 893 Issue (up) Pages 1-12
Keywords NUCLEAR REACTIONS U-238(Se-82, Ga-81), (Se-82, Ge-82), (Se-82, As-83), E=515 MeV; measured E-gamma, I-gamma (theta), gamma gamma-coin, reaction fragments, (fragment)gamma-coin using PRISMA magnetic spectrometer, gamma after deexcitation using Ge Compton-suppressed detectors of CLARA array, thin and thick target; deduced sigma(theta), levels, J, pi; calculated levels, J, pi using shell model
Abstract The level structures of the N = 50 As-83, Ge-82, and Ga-81 isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the gamma-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N = 50 shell closure in the region of Ni-78 (Z = 28). The comparison of the experimental level schemes with the shell-model calculations yields an N = 50 energy gap value of 4.7(3) MeV at Z = 28. This value, in a good agreement with the prediction of the finite-range liquid-drop model as well as with the recent large-scale shell model calculations, does not support a weakening of the N = 50 shell gap down to Z = 28.
Address [Sahin, E.; de Angelis, G.; Gadea, A.; Corradi, L.; Fioretto, E.; Gottardo, A.; Guiot, B.; Modamio, V.; Napoli, D. R.; Silvestri, R.; Stefanini, A. M.; Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy, Email: eda.sahin@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000310091000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1191
Permanent link to this record
 

 
Author Jordan, D.; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Gomez-Hornillos, M.B.; Caballero-Folch, R.; Cortes, G.; Cano-Ott, D.; Mendoza, E.; Bandac, I.; Bettini, A.; Fraile, L.M.; Domingo, C.
Title Measurement of the neutron background at the Canfranc Underground Laboratory LSC Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 42 Issue (up) Pages 1-6
Keywords Neutron background; Underground physics; He-3 proportional counters
Abstract The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure He-3 proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Phi(Hall A) = (3.44 +/- 0.35) x 10(-6) cm(-2) s(-1).
Address [Jordan, D.; Tain, J. L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jordan@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000315371900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1351
Permanent link to this record
 

 
Author Stuhl, L.; Krasznahorkay, A.; Csatlos, M.; Algora, A.; Gulyas, J.; Kalinka, G.; Timar, J.; Kalantar-Nayestanaki, N.; Rigollet, C.; Bagchi, S.; Najafi, M.A.
Title A neutron spectrometer for studying giant resonances with (p,n) reactions in inverse kinematics Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 736 Issue (up) Pages 1-9
Keywords Low-energy neutron spectrometer; Neutron time-of-flight measurements; ELENS; VM2000 wrapping
Abstract A neutron spectrometer, the European Low-Energy Neutron Spectrometer (ELENS), has been constructed to study exotic nuclei in inverse-kinematics experiments. The spectrometer, which consists of plastic scintillator bars, can be operated in the neutron energy range of 100 keV-10 MeV. The neutron energy is determined using the time-of-flight technique, while the position of the neutron detection is deduced from the time-difference information from photomultipliers attached to both ends of each bar. A novel wrapping method has been developed for the plastic scintillators. The array has a larger than 25% detection efficiency for neutrons of approximately 500 keV in kinetic energy and an angular resolution of less than 1 degrees. Details of the design, construction and experimental tests of the spectrometer will be presented.
Address [Stuhl, L.; Krasznahorkay, A.; Csatlos, M.; Algora, A.; Gulyas, J.; Kalinka, G.; Timar, J.] Hungarian Acad Sci, Inst Nucl Res, ATOMKI, Debrecen, Hungary, Email: stuhl@atomki.hu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000329404000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1695
Permanent link to this record
 

 
Author Algora, A. et al; Valencia, E.; Tain, J.L.; Jordan, M.D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner-Piza, A.; Guadilla, V.
Title Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure Type Journal Article
Year 2014 Publication Nuclear Data Sheets Abbreviated Journal Nucl. Data Sheets
Volume 120 Issue (up) Pages 12-15
Keywords
Abstract An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of Br-87,Br-88 using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.
Address [Algora, A.; Valencia, E.; Tain, J. L.; Jordan, M. D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: algora@ific.uv.es
Corporate Author Thesis
Publisher Academic Press Inc Elsevier Science Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0090-3752 ISBN Medium
Area Expedition Conference
Notes WOS:000339860100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1869
Permanent link to this record
 

 
Author Rubio, B. et al; Orrigo, S.E.A.; Montaner-Piza, A.; Agramunt, J.; Algora, A.; Molina, F.
Title Beta Decay Study of the T-z =-2 Zn-56 Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei Type Journal Article
Year 2014 Publication Nuclear Data Sheets Abbreviated Journal Nucl. Data Sheets
Volume 120 Issue (up) Pages 37-40
Keywords
Abstract This paper concerns the experimental study of the beta decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The beta-delayed gammas, beta-delayed protons and the exotic beta-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the T-z = -2 nucleus Zn-56 has been studied in detail. Information from the beta-delayed protons and beta-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in Co-56, the mirror nucleus of Cu-56.
Address [Rubio, B.; Orrigo, S. E. A.; Montaner-Piza, A.; Agramunt, J.; Algora, A.; Molina, F.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: Berta.Rubio@ific.uv.es
Corporate Author Thesis
Publisher Academic Press Inc Elsevier Science Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0090-3752 ISBN Medium
Area Expedition Conference
Notes WOS:000339860100010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1870
Permanent link to this record