toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Giachino, A.; van Hameren, A.; Ziarko, G. url  doi
openurl 
  Title A new subtraction scheme at NLO exploiting the privilege of k<sub>T</sub>-factorization Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 167 - 39pp  
  Keywords Higher-Order Perturbative Calculations; Deep Inelastic Scattering or Small-x Physics; Factorization; Renormalization Group  
  Abstract We present a subtraction method for the calculation of real-radiation integrals at NLO in hybrid k(T)-factorization. The main difference with existing methods for collinear factorization is that we subtract the momentum recoil, occurring due to the mapping from an (n + 1)-particle phase space to an n-particle phase space, from the initial-state momenta, instead of distributing it over the final-state momenta.  
  Address [Giachino, Alessandro; van Hameren, Andreas; Ziarko, Grzegorz] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland, Email: Alessandro.Giachino@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001254801000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6175  
Permanent link to this record
 

 
Author Agostini, P. et al; Mandal, S. url  doi
openurl 
  Title The Large Hadron-Electron Collider at the HL-LHC Type Journal Article
  Year 2021 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 48 Issue 11 Pages 110501 - 364pp  
  Keywords deep-inelastic scattering; high-lumi LHC; QCD; Higgs; top and electroweak physics; nuclear physics; beyond Standard Model; energy-recovery-linac; accelerator physics  
  Abstract The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton-nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron-hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.  
  Address [Agostini, P.; Armesto, N.; Ferreiro, E. G.; Salgado, C. A.] Univ Santiago de Compostela USC, Santiago De Compostela, Spain, Email: britzger@mpp.mpg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000731762500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5067  
Permanent link to this record
 

 
Author Sajjad Athar, M.; Ruiz Simo, I.; Vicente Vacas, M.J. url  doi
openurl 
  Title Nuclear medium modification of the F2(x, Q^2) structure function Type Journal Article
  Year 2011 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 857 Issue 1 Pages 29-41  
  Keywords Structure function; Nuclear medium effects; Deep inelastic scattering; Local density approximation  
  Abstract We study the nuclear effects in the electromagnetic structure function F-2(x, Q(2)) in the deep inelastic lepton nucleus scattering process by taking into account Fermi motion, binding, pion and rho meson cloud contributions. Calculations have been done in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations. The ratios R-F2(A) (x, Q(2)) = 2F(2)(A)(x, Q(2))/AF(2)(D)(x, Q(2)) are obtained and compared with recent JLab results for light nuclei with special attention to the slope of the x distributions. This magnitude shows a non-trivial A dependence and it is insensitive to possible normalization uncertainties. The results have also been compared with some of the older experiments using intermediate mass nuclei.  
  Address [Athar, M. Sajjad] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India, Email: sajathar@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290607500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 627  
Permanent link to this record
 

 
Author n_TOF Collaboration; Kappeler, F.; Mengoni, A.; Mosconi, M.; Fujii, K.; Heil, M.; Domingo-Pardo, C. doi  openurl
  Title Neutron Studies for Dating the Universe Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 2094-2099  
  Keywords Neutron capture and inelastic scattering cross sections; Re/Os cosmo-chronometer  
  Abstract The neutron capture cross sections of (186)Os and (187)Os are of key importance for defining the 8-process abundance of (187)Os at the formation of the solar system. This quantity can be used to determine the radiogenic abundance component of (187)Os from the decay of (187)Re (t(1/2) = 41.2 Gyr) and to infer the time-duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of (186)Os, (187)Os, and (188)Os have been measured at the CERN nTOF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. From these data Maxwellian averaged capture cross sections have been calculated with uncertainties between 3.3 and 4.7%. Additional information was obtained by measuring the inelastic scattering cross section of (187)Os at the Karlsruhe 3.7 MV Van de Graaff accelerator and by neutron resonance analyses of the nTOF capture data to establish a comprehensive experimental basis for the Hauser-Feshbach statistical model. Consistent I-IF calculations for the capture and inelastic reaction channels were performed to determine the stellar enhancement factors, which are required to correct the Maxwellian averaged cross sections for the effect of thermally populated excited states. The consequences of this analysis for the s-process component of the (187)Os abundance and the related impact on the evaluation of the time-duration of Galactic nucleosynthesis via the Re/Os cosmo-chronometer are discussed.  
  Address [Kappeler, F] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany, Email: franz.kaeppeler@kit.edu  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700156 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 742  
Permanent link to this record
 

 
Author Rinaldi, M. url  doi
openurl 
  Title GPDs at non-zero skewness in ADS/QCD model Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 771 Issue Pages 563-567  
  Keywords Phenomenological models; Deep inelastic scattering (phenomenology)  
  Abstract We study Generalized Parton Distribution functions (GPDs) usually measured in hard exclusive processes and encoding information on the three dimensional partonic structure of hadrons and their spin decomposition, for non-zeroskewness within the AdS/QCD formalism. To this aim the canonical scheme to calculate GPDs at zero skewness has been properly generalized. Furthermore, we show that the latter quantities, in this non-forwardregime, are sensitive to non-trivialdetails of the hadronic light front wave function, such as a kind of parton correlations usually not accessible in studies of form factors and GPDs at zero skewness.  
  Address [Rinaldi, Matteo] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: mrinaldi@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406183300084 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3262  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva