Roca, L., & Oset, E. (2021). Scalar resonances in the D+ -> K-K+K+ decay. Phys. Rev. D, 103(3), 034020–9pp.
Abstract: We study theoretically the resonant structure of the double Cabibbo suppressed D+ -> K-K+K+ decay. We start from an elementary production diagram, considered subleading in previous approaches, which cannot produce a final K-K+ pair at the tree level but which we show to be able to provide the strength of the decay through final meson-meson state interaction. The different meson-meson elementary productions are related through SU(3), and the final rescattering is implemented from a suitable implementation of unitary extensions of chiral perturbation theory, which generate dynamically the scalar resonances1 f(0)(980) and a(0)(980). We obtain a good agreement with recent experimental data from the LHCb Collaboration with a minimal freedom in the fit and show the dominance of the a(0)(980) contribution close to the threshold of the K-K+ spectrum.
|
Dias, J. M., Toledo, G., Roca, L., & Oset, E. (2021). Unveiling the K-1(1270) double-pole structure in the (B)over-bar -> J/psi rho(K)over-bar and (B)over-bar -> J/psi(K)over-bar*pi decays. Phys. Rev. D, 103(11), 116019–13pp.
Abstract: By looking at the pseudoscalar-vector meson spectra in the (B) over bar -> J/psi rho(K) over bar and (B) over bar -> J/psi(K) over bar*pi weak decays, we theoretically investigate the double-pole structure of the K-1 (1270) resonance by using the chiral unitary approach to account for the final-state interactions between the pseudoscalar (P) and vector (V) mesons. The K-1 (1270) resonance is dynamically generated through these interactions in coupled channels and influences the shape of the invariant mass distributions under consideration. We show how these shapes are affected by the K-1 (1270) double-pole structure to confront the results from our model with future experiments that might investigate the PV spectra in these decays.
|
Dai, L. R., Oset, E., Feijoo, A., Molina, R., Roca, L., Martinez Torres, A., et al. (2022). Masses and widths of the exotic molecular B-(s)(()*B-)((s))(*()) states. Phys. Rev. D, 105(7), 074017–11pp.
Abstract: We study the interaction of the doubly bottom systems BB, B*B, BsB, B-s*B, B*B*, B*B-S, B*B-s*, BsBs, BsBs*, B-s*B-s* by means of vector meson exchange with Lagrangians from an extension of the local hidden gauge approach. The full s-wave scattering matrix is obtained implementing unitarity in coupled channels by means of the Bethe-Salpeter equation. We find poles below the channel thresholds for the attractively interacting channels B*B in I = 0, B-s*B – B*B-s in I = 1/2, B* B* in I = 0, and B-s*B* in I = 1/2, all of them with J(P) = 1(+). For these cases the widths are evaluated identifying the dominant source of imaginary part. We find binding energies of the order of 10-20 MeV, and the widths vary much from one system to the other: of the order of 10-100 eV for the B* B system and B-s*B – B* B-s, about 6 MeV for the B*B* system and of the order of 0.5 MeV for the B-s*B* system.
|
Roca, L., Song, J., & Oset, E. (2024). Molecular pentaquarks with hidden charm and double strangeness. Phys. Rev. D, 109(9), 094005–8pp.
Abstract: We analyze theoretically the coupled-channel meson-baryon interaction with global flavor c<overline>cssn and c<overline>csss, where mesons are pseudoscalars or vectors, and baryons have JP = 1/2+ or 3/2+. The aim is to explore whether the nonlinear dynamics inherent in the unitarization process within coupled channels can dynamically generate double- and triple-strange pentaquark-type states (Pcss and Pcsss, respectively), for which there is no experimental evidence to date. We evaluate the s-wave scattering matrix by implementing unitarity in coupled channels, using potential kernels obtained from t-channel vector meson exchange. The required PPV and VVV vertices are obtained from Lagrangians derived through appropriate extensions of the local hidden gauge symmetry approach to the charm sector, while capitalizing on the symmetry of the spin and flavor wave function to evaluate the BBV vertex. We find four different poles in the double strange sector, some of them degenerate in spin. For the triple-strange channel, we find the meson-baryon interaction insufficient to generate a bound or resonance state through the unitary coupled-channel dynamics.
|
Oset, E., Roca, L., & Whitehead, M. (2024). Production of pentaquarks with hidden charm and double strangeness in Ξb and Ωb decays. Phys. Rev. D, 110(3), 034016–9pp.
Abstract: Recently, several pentaquark states P-css, with global flavor (c) over bar ccssn, have been predicted within a theoretical framework based on unitary coupled channels. We study theoretically the feasibility to observe the P-css with I(J(P)) = 1/2(1/2(-)) in the decays Xi(c)(b) -> eta eta(c)Xi(0) and Omega(-)(b) -> K-eta(c)Xi(0). Indeed, within the model, the eta(c)Xi(0) channel is the lowest mass pseudoscalar-baryon channel to which this pentaquark state couples, thus we can expect to observe its signal in the eta(c)Xi(0) invariant mass distribution of the mentioned decays. We identify the dominant weak decay processes and then implement the hadronization into the different meson-baryon channels in the final state, linked by flavor symmetry. The dominant meson-baryon final state interaction is then implemented to generate the full amplitude, implicitly accounting for the dynamical emergence of the pentaquark states. We obtain a clear Breit-Wigner-like resonant signal in the spectrum of the Omega(-)(b) decay, exceeding that in the Xi(0)(b) decay by two to three orders of magnitude. In the case of the latter decay, the resonant state would manifest as a significant dip in the spectrum. We study the feasibility of searching for these b-hadron decay modes and analyzing their resonant components using the current and future data samples from the LHCb experiment.
|